• Title/Summary/Keyword: wind power generator

Search Result 709, Processing Time 0.031 seconds

A Study on Simulation-based Optimization for Wind Turbine Controller Tuning (시뮬레이션 기반의 풍력발전제어시스템 최적화 기법에 관한 연구)

  • Jeon, Gyeong-Eon;No, Tae-Soo;Kim, Guk-Seon;Kim, Ji-Yon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.503-510
    • /
    • 2011
  • This paper presents a method of optimizing the blade pitch and generator torque controllers which have been already designed for an existing wind turbine generator system. Since the highly nonlinear and uncertain characteristics of the wind turbine generator can not be fully considered in the controller design phase, some parameters such as control gains must be tuned during the field implementation phase. In this paper, nonlinear simulation software, which is based high fidelity wind turbine model, and optimization technique are effectively combined and used to tune a set of gains for the blade pitch and the generator torque controllers. Simulation results show that the baseline controllers can be effectively optimized to reduce the errors in wind turbine rotor speed and generator power output controls as well as twisting of the high and low speed shafts.

A Study of a Novel Wind Turbine Concept with Power Split Gearbox

  • Liu, Qian;Appunn, Rudiger;Hameyer, Kay
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.478-485
    • /
    • 2013
  • This paper focuses on the design and control of a new concept for wind turbines with a planetary gearbox to realize a power split. This concept, where the generated wind power is split into two parts, is to increase the utilization of the wind power and may be particularly suitable for large scale off-shore wind turbines. In order to reduce the cost of the power electronic devices, a synchronous generator, which is driven by the planetary gear, is directly connected to the power grid without electronic converter. A servo drive, which functions as the control actuator, is connected to the power grid by a power electronic converter. With small scale power electronic device, the current harmonics can also be reduced. The speed of the main shaft is controlled to track the optimal tip speed ratio. Meanwhile the speed of the synchronous generator is controlled to stay at the synchronous speed. The minimum rated power of the servo motor and the converter, is studied and discussed in this paper. Different variants of the wind turbine with a planetary gear are also compared. The controller for optimal tip speed ratio and synchronous speed tracking is given.

Power Factor Control of Wound Rotor Inductiion Generator for Wind Power Generation (풍력발전을 위한 권선형 유도발전기의 역률제어)

  • 김일환
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.6-9
    • /
    • 2000
  • In wind power generating system connected in power grid the value of stator flux has almost constant because the stator side of wound rotor induction generator is connected to power grid. Using the stator and rotor current it is possible to achieve control of generating power in stator side. This means that we can control the power factor by decoupled rotor current in synchronously rotating reference frame. To verify the theoretical analysis results of computer simulation and experiment are presented to support the discussion.

  • PDF

Starting Characteristics of Darrieus Wind Turbine (다리우스 풍력터빈 발전기의 기동특성)

  • Lee, Kyu-Yong;Lee, Woo-Suk;Seo, Young-Teak;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1018-1020
    • /
    • 2003
  • Wind-powered generator system converts wind energy into utilized electric energy. Wind power generator is classified into two categories, as horizontal or vertical axis turbine. The former is equipped with yawing mechanism which is subject to set the blade-face towards the wind direction. However, the latter does not need this mechanism, but this system needs a external power for starting. This paper deals with the method how to overcome such trouble and with the analysis of the starting characteristic and a field test with a prototype of the Darrieus wind generator was performed.

  • PDF

CCT Analysis of Power System Connected to DFIG Wind Turbine (DFIG 풍력터빈이 연계된 전력계통의 CCT 영향분석)

  • Seo, Gyu-Seok;Park, Ji-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2388-2392
    • /
    • 2013
  • Wind generation systems are very different in nature from conventional generation systems. Therefore it is necessary to research dynamic characteristics of wind generation systems connected to a power system. The stability analysis of wind turbine generator is an important issue in the operation of the power system. The result of angular stability of the power system that consists of only synchronous generators is different from that of the power system including wind turbine generators. This is due to the fact that generators connected to wind turbines are generally induction generators. The angular stability assessing synchronization of generators is determined by its corresponding critical clearing time(CCT). Wind turbine models for the analysis of power system are varied and difficult to use, but now these are standardized into four types. In this paper, the analysis of the CCT of the power system connected to wind farm considering the location and capacity is performed by using DFIG(Doubly-Fed induction Generator) wind turbine built-in type3 model in PSS/E-32.

A Study on 3-Phase Balance of Offshore Wind Generator with Dual Inverter System (2중 인버터 시스템을 갖는 해상용 풍력발전기의 3상 평형성에 관한 연구)

  • Seo, Jangho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.23-30
    • /
    • 2013
  • This paper shows the method of winding connection and the balance of three phase of dual inverter systems used for offshore wind power generator. In order to satisfy low cost manufacturing of large scaled wind generator, the number of slot per pole per phase should be reduced. For this reason, in this research, the number is selected as '1' which is the minimum number that stator can have. Based on the prototype machine, three types of machine for the analysis are selected, and various performances especially in terms of electrically balanced condition are also investigated. Moreover, in this paper, new inductance modeling of dual 3-phase considering cross-coupling between two inverter systems is proposed. The several inductances such as mutual-, synchronous inductances are studied. By using FEA, based on calculated the flux linkage of d and q-axis, the validity of the proposed inductance modeling is confirmed.

Performance Analysis of Axial-Flux Permanent-Magnet Synchronous Generator for Wind Power Applications (횡자속형 영구자석 풍력발전기의 운전특성 해석)

  • Hwang, Don-Ha;Kang, Do-Hyun;Kim, Yong-Joo;Choi, Kyeong-Ho;Bae, Sung-Woo;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.143-145
    • /
    • 2003
  • In this paper, wind power system with direct-driven axial-flux type permanent-magnet (PM) synchronous generator, 10 [kVA], 300 [rpm], is presented. In order to analyze the performance of axial PM generator, finite-element (FE) analysis is used, and the 2-dimensional equivalent model is developed. The steady-state and transient-state characteristics are respectively analyzed at no-load and resistive-inductive loads. The test results of driving characteristics are presented as well. The results are very similar to predicted performance of design. Proposed generator is feasible for use with a small-class wind power applications.

  • PDF

Stand-Alone Wind Energy Conversion System with an Asynchronous Generator

  • Singh, Bhim;Sharma, Shailendra
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.538-547
    • /
    • 2010
  • This paper deals with a stand-alone wind energy conversion system (WECS) with an isolated asynchronous generator (IAG) and voltage and frequency (VF) control feeding three-phase four-wire loads. The reference generator currents are estimated using the instantaneous symmetrical component theory to control the voltage and frequency of an IAG system. A three-leg voltage source converter (VSC) with an isolated star/delta transformer is used as an integrated VSC. An integrated VSC with a battery energy storage system (BESS) is used to control the active and reactive powers of the WECS. The WECS is modeled and simulated in MATLAB using the Simulink and the Sim Power System (SPS) toolboxes. The proposed VF controller functions as a voltage and frequency regulator, a load leveler, a load balancer and a harmonic eliminator in the WECS. A comparison is made on the rating of the VSC with and without ac capacitors connected at the terminals of an IAG. Simulation and test results are presented to verify the control algorithm.

Design of a Switched Reluctance Generator for Small Wind Power Systems (소형 풍력 발전용 스위치드 릴럭턴스 발전기의 설계)

  • Shin, Hye-Ung;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.405-410
    • /
    • 2015
  • This paper deals with the design method of 1kW-Switched Reluctance Generator (SRG) for wind power applications. The coefficient of the output equation is determined according to the purpose specification for design of SRG. Detailed design is carried out, after selecting the outer diameter of the rotor on the basis of the output equation. The generation characteristic of designed generator is verified by using Finite Element Method (FEM).

Dynamic characteristics analysis of wind-power generator rotor- bearing system (풍력발전 시스템용 유도발전기의 동특성 해석)

  • 정순철;김덕수;이재응;고장욱;차종환;오시덕
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1032-1039
    • /
    • 2001
  • In this paper, modal analysis of wind-power generator rotor system was performed by using finite element method. Experimental modal analysis of generator rotor system was performed and the result were compared with analytical ones. Sensitivity method and localized modification method were used to update finite element model. As a result of updating finite element model, errors of natural freguency were reduced within 0.5% and MAC value was improved near by l. Stability characteristics of wind-power generator rotor-bearing system through harmonic analysis about several external force will be analyzed using finite element model.

  • PDF