• Title/Summary/Keyword: wind engineering

Search Result 5,569, Processing Time 0.025 seconds

Fluctuating wind field analysis based on random Fourier spectrum for wind induced response of high-rise structures

  • Lin, Li;Ang, A.H.S.;Xia, Dan-dan;Hu, Hai-tao;Wang, Huai-feng;He, Fu-qiang
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.837-846
    • /
    • 2017
  • An accurate calculation of the stochastic wind field is the foundation for analyzing wind-induced structure response and reliability. In this research, the spatial correlation of structural wind field was considered based on the time domain method. A method for calculating the stochastic wind field based on cross stochastic Fourier spectrum was proposed. A flowchart of the proposed methodology is also presented in this study to represent the algorithm and workflow. Along with the analysis of regional wind speed distribution, the wind speed time history sample was calculated, and the efficiency can therefore be verified. Results show that the proposed method and programs could provide an efficient simulation for the wind-induced structure response analysis, and help determine the related parameters easily.

Effects of wind barriers on running safety of trains for urban rail cable-stayed bridge

  • He, Wei;Guo, Xiang-Rong;Zhu, Zhi-hui;Deng, Pengru;He, Xu-hui
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.43-57
    • /
    • 2020
  • Considering the wind barriers induced aerodynamic characteristic variations of both bridge deck and trains, this paper studies the effects of wind barriers on the safety and stability of trains as they run through an urban rail transit cable-stayed bridge which tends to be more vulnerable to wind due to its relatively low stiffness and lightweight. For the bridge equipped with wind barriers of different characteristics, the aerodynamic coefficients of trains and bridge decks are obtained from wind tunnel test firstly. And then, the space vibration equations of the wind-train-bridge system are established using the experimentally obtained aerodynamic coefficients. Through solving the dynamic equations, one can calculate the dynamic responses both the trains and bridge. The results indicate that setting wind barriers can effectively reduce the dynamic responses of both the trains and bridge, even though more wind forces acting on the bridge are caused by wind barriers. In addition, for urban rail transit cable-stayed bridges located in strong wind environment, the wind barriers are recommended to be set with 20% porosity and 2.5 m height according to the calculation results of cases with wind barriers porosity and height varying in two wide ranges, i.e., 10% - 40% and 2.0 m to 4.0 m, respectively.

Reconstruction of wind speed fields in mountainous areas using a full convolutional neural network

  • Ruifang Shen;Bo Li;Ke Li;Bowen Yan;Yuanzhao Zhang
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.231-244
    • /
    • 2024
  • As wind farms expand into low wind speed areas, an increasing number are being established in mountainous regions. To fully utilize wind energy resources, it is essential to understand the details of mountain flow fields. Reconstructing the wind speed field in complex terrain is crucial for planning, designing, operation of wind farms, which impacts the wind farm's profits throughout its life cycle. Currently, wind speed reconstruction is primarily achieved through physical and machine learning methods. However, physical methods often require significant computational costs. Therefore, we propose a Full Convolutional Neural Network (FCNN)-based reconstruction method for mountain wind velocity fields to evaluate wind resources more accurately and efficiently. This method establishes the mapping relation between terrain, wind angle, height, and corresponding velocity fields of three velocity components within a specific terrain range. Guided by this mapping relation, wind velocity fields of three components at different terrains, wind angles, and heights can be generated. The effectiveness of this method was demonstrated by reconstructing the wind speed field of complex terrain in Beijing.

Characteristics, mathematical modeling and conditional simulation of cross-wind layer forces on square section high-rise buildings

  • Ailin, Zhang;Shi, Zhang;Xiaoda, Xu;Yi, Hui;Giuseppe, Piccardo
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.369-383
    • /
    • 2022
  • Wind tunnel experiment was carried out to study the cross-wind layer forces on a square cross-section building model using a synchronous multi-pressure sensing system. The stationarity of measured wind loadings are firstly examined, revealing the non-stationary feature of cross-wind forces. By converting the measured non-stationary wind forces into an energetically equivalent stationary process, the characteristics of local wind forces are studied, such as power spectrum density and spanwise coherence function. Mathematical models to describe properties of cross-wind forces at different layers are thus established. Then, a conditional simulation method, which is able to ex-tend pressure measurements starting from experimentally measured points, is proposed for the cross-wind loading. The method can reproduce the non-stationary cross-wind force by simulating a stationary process and the corresponding time varying amplitudes independently; in this way the non-stationary wind forces can finally be obtained by combining the two parts together. The feasibility and reliability of the proposed method is highlighted by an ex-ample of across wind loading simulation, based on the experimental results analyzed in the first part of the paper.

Probabilistic and spectral modelling of dynamic wind effects of quayside container cranes

  • Su, Ning;Peng, Shitao;Hong, Ningning;Wu, Xiaotong;Chen, Yunyue
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.405-421
    • /
    • 2020
  • Quayside container cranes are important delivery machineries located in the most frontiers of container terminals, where strong wind attacks happen occasionally. Since the previous researches on quayside container cranes mainly focused on the mean wind load and static response characteristics, the fluctuating wind load and dynamic response characteristics require further investigations. In the present study, the aerodynamic wind loads on quayside container cranes were obtained from wind tunnel tests. The probabilistic and spectral models of the fluctuating aerodynamic loads were established. Then the joint probabilistic distributions of dynamic wind-induced responses were derived theoretically based on a series of Gaussian and independent assumption of resonant components. Finally, the results were validated by time domain analysis using wind tunnel data. It is concluded that the assumptions are acceptable. And the presented approach can estimate peak dynamic sliding force, overturning moments and leg uplifts of quayside container cranes effectively and efficiently.

Natural wind impact analysis of transiting test method to measure wind pressure coefficients

  • Liu, Lulu;Li, Shengli;Guo, Pan;Wang, Xidong
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.199-210
    • /
    • 2020
  • Building wind pressure coefficient transiting test is a new method to test the building wind pressure coefficient by using the wind generated by a moving vehicle, which is susceptible to natural wind and other factors. In this paper, the Commonwealth Advisory Aeronautical Research Council standard model with a scale ratio of 1:300 is used as the test object, and the wind pressure coefficient transiting test is repeated under different natural wind conditions to study the influence of natural wind. Natural wind is measured by an ultrasonic anemometer at a fixed location. All building wind pressure coefficient transiting tests meet the test conditions, and the vehicle's driving speed is 72 km/h. The mean wind pressure coefficient, the fluctuating wind pressure coefficient, and the correlation coefficient of wind pressure are used to describe the influence of natural wind on the building wind pressure coefficient transiting test qualitatively and quantitatively. Some rules, which can also help subsequent transiting tests, are also summarized.

Dynamic analysis of wind-vehicle-bridge system considering additional moments of non-uniform winds by wind shielding effect of multi-limb tower

  • Xu Han;Huoyue Xiang;Xuli Chen;Yongle Li
    • Wind and Structures
    • /
    • v.36 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • To evaluate the wind shielding effect of bridge towers with multiple limbs on high-speed trains, a wind tunnel test was conducted to investigate the aerodynamic characteristics of vehicles traversing multi-limb towers, which represented a combination of the steady aerodynamic coefficient of the vehicle-bridge system and wind environment around the tower. Subsequently, the analysis model of wind-vehicle-bridge (WVB) system considering the additional moments caused by lift and drag forces under nonuniform wind was proposed, and the reliability and accuracy of the proposed model of WVB system were verified using another model. Finally, the factors influencing the wind shielding effect of multi-limb towers were analyzed. The results indicate that the wind speed distributions along the span exhibit two sudden changes, and the wind speed generally decreases with increasing wind direction angle. The pitching and yawing accelerations of vehicles under nonuniform wind loads significantly increase due to the additional pitching and yawing moments. The sudden change values of the lateral and yawing accelerations caused by the wind shielding effect of multi-limb tower are 0.43 m/s2 and 0.11 rad/s2 within 0.4 s, respectively. The results indicate that the wind shielding effect of a multi-limb tower is the controlling factor in WVB systems.

Operation Scheme for a Wind Farm to Mitigate Output Power Variation

  • Lee, Sung-Eun;Won, Dong-Jun;Chung, Il-Yop
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.869-875
    • /
    • 2012
  • Because of the nature of wind, the output power of wind turbines fluctuates according to wind speed variation. Therefore, many countries have set up wind-turbine interconnection standards usually named as Grid-Code to regulate the output power of wind farms to improve power system reliability and power quality. This paper proposes three operation modes of wind farms such as maximum power point tracking (MPPT) mode, single wind turbine control mode and wind farm control mode to control the output power of wind turbines as well as overall wind farms. This paper also proposes an operation scheme of wind farm to alleviate power fluctuation of wind farm by choosing the appropriate control mode and coordinating multiple wind turbines in consideration of grid conditions. The performance of the proposed scheme is verified via simulation studies in PSCAD/EMTDC with doubly-fed induction generator (DFIG) based wind turbine models.

Dynamic analysis of coupled wind-train-bridge system considering tower shielding and triangular wind barriers

  • Zhang, Nan;Ge, Guanghui;Xia, He;Li, Xiaozhen
    • Wind and Structures
    • /
    • v.21 no.3
    • /
    • pp.311-329
    • /
    • 2015
  • A method for analyzing the coupled wind-vehicle-bridge system is proposed that also considers the shielding effect of the bridge tower with triangular wind barriers. The static wind load and the buffeting wind load for both the bridge and the vehicle are included. The shielding effects of the bridge tower and the triangular wind barriers are incorporated by taking the surface integral of the wind load. The inter-history iteration is adopted to solve the vehicle-bridge dynamic equations with time-varying external loads. The results show that after installing the triangular wind barriers in the area of the bridge tower, the bridge response and the vehicle safety factors change slightly. The peak value of the train car body acceleration is significantly reduced when the wind barrier size is increased.

Wind energy into the future: The challenge of deep-water wind farms

  • Ricciardelli, Francesco;Maienza, Carmela;Vardaroglu, Mustafa;Avossa, Alberto Maria
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.321-340
    • /
    • 2021
  • In 2019, 5.6% of the total energy produced worldwide came from wind. Offshore wind generation is still a small portion of the total wind generation, yet its growth is exponential. Higher availability of sites, larger producibility and potentially lower environmental impacts make offshore wind generation attractive. On the other hand, as the water depth increases, fixed foundations are no more viable, and the new frontier is that of floating foundations. This paper brings an overview of why and how offshore wind energy should move deep water; it contains material from the Keynote Lecture given by the first author at the ACEM20/Structures20 Conference, held in Seoul in August 2020. The paper is organized into four sections: the first giving general concepts about wind generation especially offshore, the second and the third considering economic and technical aspects, respectively, of offshore deep-water wind generation, in the fourth, some challenges of floating offshore wind generation are presented and some conclusions are drawn.