• Title/Summary/Keyword: wild type

Search Result 2,378, Processing Time 0.039 seconds

Construction of a Fluorescently Labeled Infectious R Peptide-Less Moloney MLV Molecular Clone for Analysis of Syncytium (합포체 분석을 위해 R 펩타이드가 결여된 형광 표지 Moloney 마우스레트로바이러스 Molecular Clone 제조)

  • Lee, Yong-Jin;Park, Jin-Woo;Lee, Kyu-Jun;Bae, Eun-Hye;Park, Sung-Han;Lim, Ji-Hyun;Kim, Sae-Ro-Mi;Jung, Yong-Tae
    • Korean Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.246-250
    • /
    • 2009
  • Retroviruses enter host cells by membrane fusion between the viral Env proteins on the virus membrane and a virus receptor on the cellular membrane. The envelope protein of the ecotropic Moloney murine leukemia virus is synthesized as a gp85 precursor and is proteolytically cleaved into an extracellular surface unit (SU) and the transmembrane protein (TM). The cytoplasmic tail (16 amino acid; R peptide) of the TM protein is further cleaved by the viral protease during virion maturation. Unlike the wild type Env protrin bearing the R peptide, R peptide-truncated Envelope induces syncytia in susceptible cells. To understand the mechanism of R peptidetruncated Env in syncytium formation, R peptide-truncated Env expressing full-length molecular clone containing EGFP in PRR (proline rich region) of Env was constructed. This molecular clone induced syncytia in transfected NIH3T3 cells, fluorescence was detected in the cytoplasm and at the plasma membrane, while the nuclei did not stain and appeared black by fluorescence microscopy. Interestingly, virions with truncated envelope produced from transfected NIH3T3 cells induced syncytia in NIH3T3 cells, but fluorescence was not detected in the same infected cells. It is believed that cell-free viruses direct the fusion of neighboring cells without infection. Our data suggests that use of EGFP-tagged envelope for monitoring syncytium is a sensitive and convenient method. We also found that virion incorporated the R peptide-truncated Env is able to induce the formation of syncytia by fusion from without.

Selection of Growth Characteristics and Yield of Annual Legumes on Paddy Field (논에서 생육특성과 수량이 우수한 두과 사료작물 선발)

  • Kim, Won-Ho;Lee, Joung-Kyong;Park, Hyung-Soo;HwangBo, Soon;Lim, Young-Cheol;Ji, Hee-Chung;Lee, Hyo-Won;Yoon, Bong-Ki;Seo, Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.4
    • /
    • pp.307-312
    • /
    • 2009
  • This experiment was conducted to compare the agronomic characteristics and productivity of induced annual legumes at paddy field of Cheonan and Naju from 2004 to 2006. Chinese milk vetch (wild type), crimson clover (C.V. Linkarus), forage pea (C.V. Austrian pea), hairy vetch (C.V. Oregon commen) were used in this study. At the Naju region, the earliest flowering on 2nd may was found in Chinese milk vetch, while the latest on 18th May in forage pea. Fresh, dry matter (DM) and crude protein (CP) yields of crimson clover were highest as 28,870, 6,986 and 943 kg/ha, respectively. but the yield of chinese milk vetch was low by 9,885, 1,749 and 338 kg/ha. At the Cheonan region, the most fast flowering date variety was Chinese milk vetch, hairy vetch was very late as 19th May. Fresh, DM and CP yields of hairy vetch were highest as 7,916, 1,141 and 113 kg/ha, respectively. but the yield of chinese milk vetch showed the lowest by 270, 42 and 8 kg/ha. The CP content of annual legumes was 14.3%. chinese milk vetch showed the highest CP content by 19.3% and hairy vetch showed the lowest content by 9.9%. The present data showed that the productivity was closely dependent on winter hardness, in conclusion, crimson clover at Naju and hairy vetch at Cheonan region was suggested to be the most proper species as winter crop after rice harvest on paddy field when considered the winter hardiness.

The Role of DNA Binding Domain in hHSF1 through Redox State (산화환원에 따른 hHSF1의 DNA binding domain의 역할)

  • Kim, Sol;Hwang, Yun-Jeong;Kim, Hee-Eun;Lu, Ming;Kim, An-D-Re;Moon, Ji-Young;Kang, Ho-Sung;Park, Jang-Su
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.1052-1059
    • /
    • 2006
  • The heat shock response is induced by environmental stress, pathophysiological state and non-stress conditions and wide spread from bacteria to human. Although translations of most proteins are stopped under a heat shock response, heat shock proteins (HSPs) are produced to protect cell from stress. When heat shock response is induced, conformation of HSF1 was changed from monomer to trimer and HSF1 specifically binds to DNA, which was called a heat shock element(HSE) within the promoter of the heat shock genes. Human HSF1(hHSFl) contains five cysteine(Cys) residues. A thiol group(R-SH) of Cys is a strong nucleophile, the most readily oxidized and nitrosylated in amino acid chain. This consideration suggests that Cys residues may regulate the change of conformation and the activity of hHSF1 through a redox-dependent thiol/disulfide exchange reaction. We want to construct role of five Cys residues of hHSF by redox reagents. According to two studies, Cys residues are related to trimer formation of hHSF1. In this study, we want to demonstrate the correlation between structural change and DNA-binding activity of HSF1 through forming disulfide bond and trimerization. In this results, we could deduce that DNA binding activity of DNA binding domain wasn't affected by redox for always expose outside to easily bind to DNA. DNA binding activity of wild-type HSF's DNA binding domain was affected by conformational change, as conformational structure change (trimerization) caused DNA binding domain.

High Yield Bacterial Expression and Purification of Active Cytochrome P450 p-coumarate-3-hydroxylase (C3H), the Arabidopsis Membrane Protein (대장균 시스템을 이용한 Arabidopsis 막 단백질 cytochrome P450 p-coumarate-3hydroxylase (C3H) 활성형의 과발현 및 분리정제)

  • Yang, Hee-Jung;Kim, Wan-Yeon;Yun, Young-Ju;Yoon, Ji-Won;Kwon, Tae-Woo;Youn, Hye-Sook;Youn, Bu-Hyun
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1039-1046
    • /
    • 2009
  • The cytochrome P450s (P450s) metabolizing natural products are among the most versatile biological catalysts known in plants, but knowledge of the structural basis for their broad substrate specificity has been limited. The activity of p-coumarate 3-hydroxylase (C3H) is thought to be essential for the biosynthesis of lignin and many other phenylpropanoid pathway products in plants however, all attempts to express and purify the protein corresponding C3H gene have failed. As a result, no conditions suitable for the unambiguous assay of the enzyme are known. The detailed understanding of the mechanism and substrate-specificity of C3Hdemands a method for the production of active protein on the milligram scale. We have developed a bacterial expression and purification system for the plant C3H, which allows for the quick expression and purification of active wild-type C3H via introduction of combinational mutagenesis. The modified cytochrome P450 C3H ($C3H_{mod}$) could be purified in the absence of detergent using immobilized metal affinity chromatography and size exclusion chromatography following extraction from isolated membranes in a high salt buffer and catalytically activated. This method makes the use of isotopic labeling of C3H for NMRstudies and X-ray crystallography practical, and is also applicable to other plant cytochrome P450 proteins.

Vegetation Strucure of Haepyeong Wetland in Nakdong River (낙동강 해평 습지의 식생 구조)

  • Lee, Pal-Hong;Kim, Cheol-Soo;Kim, Tae-Geun;Oh, Kyung-hwan
    • Journal of Wetlands Research
    • /
    • v.7 no.3
    • /
    • pp.87-95
    • /
    • 2005
  • Vegetation structure of the vascular plants was investigated from March 2003 to October 2003 in Haepyeong wetland, Gumi-si, Gyeongsangbuk-do, Korea. Actual vegetation of Haepyeong wetland largely can be classified by floristic composition and physiognomy into 18 communities; Xanthium strumarium-Digitaria sanguinalis, Humulus japonicus, Persicaria perfoliata-Humulus japonicus, Phragmites japonica-Miscanthus sacchariflorus, Persicaria hydropiper-Phragmites communis, Persicaria hydropiper, Phragmites japonica-Persicaria hydropiper, Miscanthus sacchariflorus- Phragmites japonica, Persicaria hydropiper-Phragmites japonica, Miscanthus sacchariflorus-Salix glandulosa, Salix nipponica-Salix glandulosa, Salix nipponica-Salix koreensis, Salix nipponica, Miscanthus sacchariflorus-Salix nipponica, Phalaris arundinacea-Salix nipponica, Salix glandulosa-Salix nipponica, Trapa japonica, and Ceratophyllum demersum-Trapa japonica. Among them, the area of the Salix nipponica-Salix koreensis community was the largest as 122.2ha(9.23%). The dominant vegetation type was Miscanthus sacchariflorus-Persicaria hydropiper community based on phytosociological method, and it was was classified into three subcommunities; Salix glandulosa-Salix nipponica subcommunity, Digitaria sanguinalis subcommunity, and Cyperus amuricus subcommunity. Differential species of Salix glandulosa-Salix nipponica subcommunity were Salix nipponica, S. glandulosa, S. koreensis, Scirpus radicans, Persicaria maackiana, and Achyranthes japonica; differential species of Digitaria sanguinalis subcommunity were D. sanguinalis, Setaria viridis, Ambrosia artemisiifolia var. elatior, and Cyperus orthostachyus; differential species of Xanthium strumarium subcommunity were X. strumarium, Acalypha australis, Erigeron canadensis, Echinochloa crus-galli, and Vicia tetrasperma. Zonation of vascular hydrophytes and hygrophytes was as followers: Salix glandulosa, S. koreensis, S. nipponica were distributed in the region of land which water table is low, and Persicaria maackiana, Persicaria hydropiper, Scirpus radicans were distributed in the understory. And emergent plants such as Phragmites communis and Scirpus karuizawensis, floating-leaved plant such as Trapa japonica, submersed plant such as Ceratophyllum demersum, and free floating plant such as Spirodela polyrhiza formed the zonation from shoreline to water. The specified wild plants designated by the Korean Association for Conservation of Nature, Ministry of Forest, and Ministry of Environment were not distributed in the study area. It was expected that Haepyeong Wetland worthy of conservation contributed purifying water pollution, giving habitats of many lifes, and providing beautiful scenes of the river.

  • PDF

Adrenomedullin Deficiency Increases the Susceptibility of Liver Fibrosis Induced by CCl4 (아드레노메둘린 결핍은 사염화탄소로 유도된 간경화 감수성을 상승시킴)

  • Ji, Ae-Ri;Hwang, Meeyul;Kim, Ah-Young;Lee, Eun-Mi;Lee, Eun-Joo;Lee, Myeong-Mi;Sung, Soo-Eun;Kim, Sang-Hyeob;Park, Jin-Kyu;Jeong, Kyu-Shik
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.463-472
    • /
    • 2015
  • Adrenomedullin (AM) is a peptide expressed in all body tissues, and its related receptors are increased in liver fibrosis. In this study, we evaluated the effect of AM deficiency on liver fibrogenesis induced by $CCl_4$ using AM heterozygous (HT) mice. The animals received a single injection of $CCl_4$ or olive oil for the acute experiment, and received $CCl_4$ or olive oil three times a week for 6 weeks for the chronic experiment. Fibrosis was accessed using histopathological analysis and the western blot. The AM HT mice showed mild pericentrilobular degeneration when compared to the AM wild type (WT) mice. In the acute experiment, there was no significant difference between the AM WT and AM HT mice. However, in the chronic experiment, the $CCl_4$-treated AM HT mice showed more severe liver fibrosis than that of the CCl4-treated AM WT mice. The AST and ALT levels of the AM HT $CCl_4$ group were higher than those of the AM WT CCl4 group. Additionally, the collagen deposition, $\alpha$- SMA protein and TGF-$\beta$ protein were increased in the AM HT $CCl_4$ group when compared to the AM WT $CCl_4$ group. The AM HT mice also exhibited severe lipid peroxidation through the GSH decrement. Taken together, our data suggest that AM deficiency increases the susceptibility to liver fibrosis induced by $CCl_4$, indicating a novel therapeutic target for patients with liver fibrosis.

Apoptotic Cell Death by Pectenotoxin-2 in p53-Deficient Human Hepatocellular Carcinoma Cells (종양억제유전자 p53 결손 인체간암세포에서 Pectenotoxin-2에 의한 Apoptosis 유도)

  • Shin, Dong-Yeok;Kim, Gi-Young;Choi, Byung-Tae;Kang, Ho-Sung;Jung, Jee-H.;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.10
    • /
    • pp.1447-1451
    • /
    • 2007
  • Through the screening of marine natural compounds that inhibit cancer cell proliferation, we previously reported that pectenotoxin-2 (PTX-2) isolated from marine sponges exhibits selective cytotoxicity against several cell lines in p53-deficient tumor cells compared to those with functional p53. However, the molecular mechanisms of its anti-proliferative action on malignant cell growth are not completely known. To further explore the mechanisms of its anti-cancer activity and to test whether the status of p53 in liver cancer cells correlates with their chemo-sensitivities to PTX-2, we used two well-known hepatocarcinoma cell lines, p53-deficient Hep3B and p53-wild type HepG2. We have demonstrated that PTX-2 markedly inhibits Hep3B cell growth and induces apoptosis whereas HepG2 cells are much more resistant to PTX-2 suggesting that PTX-2 seems to act by p53-independent cytotoxic mechanism. The apoptosis induced by PTX-2 in Hep3B cells was associated with the modulation of DNA fragmentation factor (DFF) family proteins, up-regulation of pro-apoptotic Bcl-2 family members such as Bax and Bcl-xS and activation of caspases (caspase-3, -8 and -9). Blockade of the caspase-3 activity by caspase-3 inhibitor, z-DEVD-fmk, prevented the PTX-2-induced growth inhibition in Hep3B cells. Moreover, treatment with PTX-2 also induced phosphorylation of AKT and extracellular-signal regulating kinase (ERK), but not c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MARK). Specific inhibitors of PI3K inhibitor (LY294002) and ERK1/2 inhibitor (PD98059) significantly blocks PTX-2-induced-anti-proliferative effects, whereas a JNK inhibitor (SP600125) and a p38 MAPK inhibitor (SB203580) have no significant effects demonstrating that the pro-apoptotic effect of PTX-2 mediated through activation of AKT and ERK signal pathway in Hep3B cells.

Activation of Pro-Apoptotic Multidomain Bcl-2 Family Member Bak and Mitochondria-Dependent Caspase Cascade are Involved in p-Coumaric Acid-Induced Apoptosis in Human Jurkat T Cells (p-Coumaric acid에 의해 유도되는 인체 Jurkat T 세포의 에폽토시스 기전)

  • Lee, Je-Won;Kim, Young-Ho
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1678-1688
    • /
    • 2011
  • The apoptogenic effect of p-coumaric acid, a phenolic acid found in various edible plants, on human acute leukemia Jurkat T cells was investigated. Exposure of Jurkat T cells to p-coumaric acid (50-$150{\mu}M$) caused cytotoxicity and TdT-mediated dUTP nick-end labeling (TUNEL)-positive apoptotic DNA fragmentation along with Bak activation, ${\Delta}{\psi}m$ loss, activation of caspase-9, -3, -7, and -8, and PARP degradation in a dose-dependent manner. However,these apoptotic events were completely abrogated in Jurkat T cells overexpressing Bcl-2.Under these conditions, necrosis was not accompanied. Pretreatment of the cells with the pan-caspase inhibitor (z-VAD-fmk) could prevent p-coumaric acid-induced sub-$G_1$ peak representing apoptotic cells, whereas it failed to block ${\Delta}{\psi}m$ loss, indicating that the activation of caspase cascade was prerequisite for p-coumaric acid-induced apoptosis as a downstream event of ${\Delta}{\psi}m$ loss. FADD- and caspase-8-positive wild-type Jurkat T cell clone A3, FADD-deficient Jurkat T cell clone I2.1, and caspase-8-deficient Jurkat T cell clone I9.2 exhibited similar susceptibilities to the cytotoxicity of p-coumaric acid, excluding an involvement of Fas/FasL system in triggering the apoptosis. The apoptogenic activity of p-coumaric acid is more potent in malignant Jurkat T cells than in normal human peripheral T cells. Together, these results demonstrated that p-coumaric acid-induced apoptogenic activity in Jurkat T cellswas mediated by Bak activation, ${\Delta}{\psi}m$ loss, and subsequent activation of multiple caspases such as caspase-9, -3, -7, and-8, and PARP degradation, which could be regulated by anti-apoptotic protein Bcl-2.

Overexpression and Activity Analysis of Cystathionine γ-Lyase Responsible for the Biogenesis of H2S Neurotransmitter (새로운 신경전달물질 H2S 발생 효소, cystathionine γ-lyase의 대량발현 조건과 활성측정)

  • Kim, Kyoung-Ran;Byun, Hae-Jung;Cho, Hyun-Nam;Kim, Jung-Hyun;Yang, Seun-Ah;Jhee, Kwang-Hwan
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.119-126
    • /
    • 2011
  • There is a growing recognition of the significance of $H_2S$ as a biological signaling molecule involved in vascular and nervous system functions. In mammals, two enzymes in the transsulfuration pathway, cystathionine ${\beta}$-synthase (CBS) and cystathionine ${\gamma}$-lyase (CGL), are believed to be chiefly responsible for $H_2S$ biogenesis. Genetic inborn error of CGL leads to human genetic disease, cystathioninuria, by accumulating cystathionine in the body. This disease is secondarily associated with a wide range of diseases including diabetes insipidus and Down's syndrome. Although the human CGL (hCGL) overexpression is essential for the investigation of its function, structure, reaction specificity, substrate specificity, and protein-protein interactions, there is no clear report concerning optimum overexpression conditions. In this study, we report a detailed analysis of the overexpression conditions of the hCGL using a bacterial system. Maximum overexpression was obtained in conditions of low culture temperature after inducer addition, performing low aeration during overexpression, and using a low concentration inducer (0.1 mM, IPTG) for induction. Expressed hCGL was purified by His-tag affinity column chromatography and confirmed by Western blot using hCGL antibody and enzyme activity analysis. We also report that the His tag with TEV site attached protein exhibits 76% activity for ${\alpha}-{\gamma}$ elimination reaction with L-cystathionine and 88% for ${\alpha}-{\beta}$ elimination reaction with L-cysteine compared to those of wild type hCGL, respectively. His tag with TEV site attached protein also exhibits a 420 nm absorption maximum, which is attributed to the binding cofactor, pyridoxal 5'-phosphate (PLP).

Analysis of Putative Downstream Genes of Arabidopsis AtERF71/HRE2 Transcription Factor using a Microarray (마이크로어레이를 이용한 애기장대 AtERF71/HRE2 전사인자의 하위 유전자 분석)

  • Seok, Hye-Yeon;Lee, Sun-Young;Woo, Dong-Hyuk;Park, Hee-Yeon;Moon, Yong-Hwan
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1359-1370
    • /
    • 2012
  • Arabidopsis AtERF71/HRE2, a transcription activator, is located in the nucleus and is involved in the signal transduction of low oxygen and osmotic stresses. In this study, microarray analysis using AtERF71/HRE2-overexpressing transgenic plants was performed to identify genes downstream of AtERF71/HRE2. A total of 161 different genes as well as AtERF71/HRE2 showed more than a twofold higher expression in AtERF71/HRE2-overexpressing transgenic plants compared with wild-type plants. Among the 161 genes, 24 genes were transcriptional regulators, such as transcription factors and DNA-binding proteins, based on gene ontology annotations, suggesting that AtERF71/HRE2 is an upstream transcription factor that regulates the activities of various downstream genes via these transcription regulators. RT-PCR analysis of 15 genes selected out of the 161 genes showed higher expression in AtERF71/HRE2-overexpressing transgenic plants, validating the microarray data. On the basis of Genevestigator database analysis, 51 genes among the 161 genes were highly expressed under low oxygen and/or osmotic stresses. RT-PCR analysis showed that the expression levels of three genes among the selected 15 genes increased under low oxygen stress and another three genes increased under high salt stress, suggesting that these genes might be downstream genes of AtERF71/HRE2 in low oxygen or high salt stress signal transduction. Microarray analysis results indicated that AtERF71/HRE2 might also be involved in the responses to other abiotic stresses and also in the regulation of plant developmental processes.