Browse > Article
http://dx.doi.org/10.5352/JLS.2012.22.10.1359

Analysis of Putative Downstream Genes of Arabidopsis AtERF71/HRE2 Transcription Factor using a Microarray  

Seok, Hye-Yeon (Department of Molecular Biology, Pusan National University)
Lee, Sun-Young (Department of Molecular Biology, Pusan National University)
Woo, Dong-Hyuk (Department of Molecular Biology, Pusan National University)
Park, Hee-Yeon (Department of Molecular Biology, Pusan National University)
Moon, Yong-Hwan (Department of Molecular Biology, Pusan National University)
Publication Information
Journal of Life Science / v.22, no.10, 2012 , pp. 1359-1370 More about this Journal
Abstract
Arabidopsis AtERF71/HRE2, a transcription activator, is located in the nucleus and is involved in the signal transduction of low oxygen and osmotic stresses. In this study, microarray analysis using AtERF71/HRE2-overexpressing transgenic plants was performed to identify genes downstream of AtERF71/HRE2. A total of 161 different genes as well as AtERF71/HRE2 showed more than a twofold higher expression in AtERF71/HRE2-overexpressing transgenic plants compared with wild-type plants. Among the 161 genes, 24 genes were transcriptional regulators, such as transcription factors and DNA-binding proteins, based on gene ontology annotations, suggesting that AtERF71/HRE2 is an upstream transcription factor that regulates the activities of various downstream genes via these transcription regulators. RT-PCR analysis of 15 genes selected out of the 161 genes showed higher expression in AtERF71/HRE2-overexpressing transgenic plants, validating the microarray data. On the basis of Genevestigator database analysis, 51 genes among the 161 genes were highly expressed under low oxygen and/or osmotic stresses. RT-PCR analysis showed that the expression levels of three genes among the selected 15 genes increased under low oxygen stress and another three genes increased under high salt stress, suggesting that these genes might be downstream genes of AtERF71/HRE2 in low oxygen or high salt stress signal transduction. Microarray analysis results indicated that AtERF71/HRE2 might also be involved in the responses to other abiotic stresses and also in the regulation of plant developmental processes.
Keywords
Arabidopsis; AtERF71/HRE2; transcription activator; microarray; downstream genes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hattori, Y., Nagai, K., Furukawa, S., Song, X. J., Kawano, R., Sakakibara, H., Wu, J., Matsumoto, T., Yoshimura, A., Kitano, H., Matsuoka, M., Mori, H. and Ashikari, M. 2009. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460, 1026-1030.   DOI
2 Hess, N., Klode, M., Anders, M. and Sauter, M. 2011. The hypoxia responsive transcription factor genes ERF71/HRE2 and ERF73/HRE1 of Arabidopsis are differentially regulated by ethylene. Physiol. Plant 143, 41-49.   DOI
3 Hinz, M., Wilson, I. W., Yang, J., Buerstenbinder, K., Llewellyn, D., Dennis, E. S., Sauter, M. and Dolferus, R. 2010. Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiol. 153, 757-772.   DOI
4 Ibrahim, R. K., Bruneau, A. and Bantignies, B. 1998. Plant O-methyltransferases: molecular analysis, common signature and Classification. Plant Mol. Biol. 36, 1-10.   DOI   ScienceOn
5 Kagaya, Y., Ohmiya, K. and Hattori, T. 1999. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res. 27, 470-478.   DOI   ScienceOn
6 Khan, M. N., Siddiqui, M. H., Mohammad, F. and Naeem, M. 2012. Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. Nitric Oxide 27, 210-218.   DOI
7 Kim, S. J. and Bassham, D. C. 2011. TNO1 Is Involved in Salt Tolerance and Vacuolar Trafficking in Arabidopsis. Plant Physiol. 156, 514-526.   DOI
8 Knight, H. and Knight, M. R. 2001. Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci. 6, 262-267.   DOI   ScienceOn
9 Lexer, C. and Fay, M. F. 2005. Adaptation to environmental stress: a rare or frequent driver of speciation? J. Evol. Biol. 18, 893-900.   DOI
10 Licausi, F., van Dongen, J. T., Giuntoli, B., Novi, G., Santaniello, A., Geigenberger, P. and Perata, P. 2010. HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J. 62, 302-315.   DOI
11 Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473-497.   DOI
12 Nakano, T., Suzuki, K., Fujimura, T. and Shinshi, H. 2006. Genome-Wide Analysis of the ERF Gene Family in Arabidopsis and Rice. Plant Physiol. 140, 411-432.   DOI
13 Park, H. Y., Seok, H. Y., Woo, D. H., Lee, S. Y., Tarte, V. N., Lee, E. H., Lee, C. H. and Moon, Y. H. 2011. AtERF71/HRE2 transcription factor mediates osmotic stress response as well as hypoxia response in Arabidopsis. Biochem. Biophys. Res. Commun. 414, 135-141.   DOI
14 Perata, P. and Voesenek, L. A. 2007. Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene. Trends Plant Sci. 12, 43-46.   DOI
15 Rushton, P. J. and Somssich, I. E. 1998. Transcriptional control of plant genes responsive to pathogens. Curr. Opin. Plant Biol. 1, 311-315.   DOI   ScienceOn
16 Sakuma, Y., Liu, Q., Dubouzet, J. G., Abe, H., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290, 998-1009.   DOI   ScienceOn
17 Stockinger, E. J., Gilmour, S. J. and Thomashow, M. F. 1997. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA. 94, 1035-1040.   DOI   ScienceOn
18 Sawa, M., Nusinow, D. A., Kay, S. A. and Imaizumi, T. 2007. FKF1 and GIGANTEA Complex Formation Is Required for Day-Length Measurement in Arabidopsis. Science 318, 261-265.   DOI   ScienceOn
19 Semchuk, N. M., Lushchak, O. V., Falk, J., Krupinska, K. and Lushchak, V. I. 2009. Inactivation of genes, encoding tocopherol biosynthetic pathway enzymes, results in oxidative stress in outdoor grown Arabidopsis thaliana. Plant Physiol. Biochem. 47, 384-390.   DOI
20 Senthil-Kumar, M., Hema, R., Suryachandra, T. R., Ramegowda, H. V., Gopalakrishna, R., Rama, N., Udayakumar, M. and Mysore, K. S. 2010. Functional characterization of three water deficit stress-induced genes in tobacco and Arabidopsis: An approach based on gene down regulation. Plant Physiol. Biochem. 48, 35-44.   DOI
21 Sutter, J. U., Campanoni, P., Tyrrell, M. and Blatt, M. R. 2006. Selective Mobility and Sensitivity to SNAREs Is Exhibited by the Arabidopsis KAT1 $K^{+}$ Channel at the Plasma Membrane. Plant Cell 18, 935-954.   DOI
22 Tang, M., Sun, J., Liu, Y., Chen, F. and Shen, S. 2007. Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain-containing transcription factor, in the woody oil plant Jatropha curcas. Plant Mol. Biol. 63, 419-428.   DOI
23 Thomashow, M. F. 1999. PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 571-599.   DOI   ScienceOn
24 Zhang, G., Chen, M., Li, L., Xu, Z., Chen, X., Guo, J. and Ma, Y. 2009. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J. Exp. Bot. 60, 3781-3796.   DOI
25 Uemura, T., Satob, M. H. and Takeyasu, K. 2005. The longin domain regulates subcellular targeting of VAMP7 in Arabidopsis thaliana. FEBS Lett. 579, 2842-2846.   DOI
26 Wu, L., Chen, X., Ren, H., Zhang, Z., Zhang, H., Wang, J., Wang, X. C. and Huang, R. 2007. ERF protein JERF1 that transcriptionally modulates the expression of abscisic acid biosynthesis-related gene enhances the tolerance under salinity and cold in tobacco. Planta 226, 815-825.   DOI
27 Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A. M., Bailey-Serres, J., Ronald, P. C. and Mackill, D. J. 2006. Sub1A is an ethyleneresponse- factor-like gene that confers submergence tolerance to rice. Nature 442, 705-708.   DOI
28 Broun, P. 2004. Transcription factors as tools for metabolic engineering in plants. Curr. Opin. Plant Biol. 7, 202-209.   DOI
29 Abbasi, A. R., Hajirezaei, M., Hofius, D., Sonnewald, U. and Voll, L. M. 2007. Specific Roles of $\alpha$- and $\gamma$-Tocopherol in Abiotic Stress Responses of Transgenic Tobacco. Plant Physiol. 143, 1720-1738.   DOI
30 Bao, Y. M., Sun, S. J., Li, M., Li, L., Cao, W. L., Luo, J., Tang, H. J., Huang, J., Wang, Z. F., Wang, J. F. and Zhang, H. S. 2012. Overexpression of the Qc-SNARE gene OsSYP71 enhances tolerance to oxidative stress and resistance to rice blast in rice (Oryza sativa L.). Gene 504, 238-244.   DOI
31 Fan, H. F., Dua, C. X. and Guo, S. R. 2010. Nitric oxide enhances salt tolerance in cucumber seedlings by regulating free polyamine content. Environ. Exp. Bot. In Press.
32 Brownfield, D. L., Todd, C. D. and Deyholos, M. K. 2008. Analysis of Arabidopsis arginase gene transcription patterns indicates specific biological functions for recently diverged paralogs. Plant Mol. Biol. 67, 429-440.   DOI
33 Dombrecht, B., Xue, G. P., Sprague, S. J., Kirkegaard, J. A., Ross, J. J., Reid, J. B., Fitt, G. P., Sewelam, N., Schenk, P. M., Manners, J. M. and Kazana, K. 2007. MYC2 Differentially Modulates Diverse Jasmonate-Dependent Functions in Arabidopsis. Plant Cell 19, 2225-2245.   DOI
34 Dubos, C., Gourrierec, J. L., Baudry, A., Huep, G., Lanet, E., Debeaujon, I., Routaboul, J. M., Alboresi, A., Weisshaar, B. and Lepiniec, L. 2008. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J. 55, 940-953.   DOI
35 Gong, W., Shen, Y. P., Ma, L. G., Pan, Y., Du, Y. L., Wang, D. H., Yang, J. Y., Hu, L. D., Liu, X. F., Dong, C. X., Ma, L., Chen, Y. H., Yang, X. Y., Gao, Y., Zhu, D., Tan, X., Mu, J. Y., Zhang, D. B., Liu, Y. L., Dinesh-Kumar, S. P., Li, Y., Wang, X. P., Gu, H. Y., Qu, L. J., Bai, S. N., Lu, Y. T., Li, J. Y., Zhao, J. D., Zuo, J., Huang, H., Deng, X. W. and Zhu, Y. X. 2004. Genome-wide ORFeome cloning and analysis of Arabidopsis transcription factor genes. Plant Physiol. 135, 773-782.   DOI   ScienceOn
36 Gutterson, N. and Reuber, T. L. 2004. Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr. Opin. Plant Biol. 7, 465-471.   DOI   ScienceOn
37 Haake, V., Cook, D., Riechmann, J. L., Pineda, O., Thomashow, M. F. and Zhang, J. Z. 2002. Transcription Factor CBF4 Is a Regulator of Drought Adaptation in Arabidopsis. Plant Physiol. 130, 639-648.   DOI   ScienceOn
38 Hao, D., Ohme-Takagi, M. and Sarai, A. 1998. Unique mode of GCC box recognition by the DNA-binding domain of ethylene- responsive element-binding factor (ERF domain) in plant. J. Biol. Chem. 273, 26857-26861.   DOI