Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.12.1678

Activation of Pro-Apoptotic Multidomain Bcl-2 Family Member Bak and Mitochondria-Dependent Caspase Cascade are Involved in p-Coumaric Acid-Induced Apoptosis in Human Jurkat T Cells  

Lee, Je-Won (Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University)
Kim, Young-Ho (Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University)
Publication Information
Journal of Life Science / v.21, no.12, 2011 , pp. 1678-1688 More about this Journal
Abstract
The apoptogenic effect of p-coumaric acid, a phenolic acid found in various edible plants, on human acute leukemia Jurkat T cells was investigated. Exposure of Jurkat T cells to p-coumaric acid (50-$150{\mu}M$) caused cytotoxicity and TdT-mediated dUTP nick-end labeling (TUNEL)-positive apoptotic DNA fragmentation along with Bak activation, ${\Delta}{\psi}m$ loss, activation of caspase-9, -3, -7, and -8, and PARP degradation in a dose-dependent manner. However,these apoptotic events were completely abrogated in Jurkat T cells overexpressing Bcl-2.Under these conditions, necrosis was not accompanied. Pretreatment of the cells with the pan-caspase inhibitor (z-VAD-fmk) could prevent p-coumaric acid-induced sub-$G_1$ peak representing apoptotic cells, whereas it failed to block ${\Delta}{\psi}m$ loss, indicating that the activation of caspase cascade was prerequisite for p-coumaric acid-induced apoptosis as a downstream event of ${\Delta}{\psi}m$ loss. FADD- and caspase-8-positive wild-type Jurkat T cell clone A3, FADD-deficient Jurkat T cell clone I2.1, and caspase-8-deficient Jurkat T cell clone I9.2 exhibited similar susceptibilities to the cytotoxicity of p-coumaric acid, excluding an involvement of Fas/FasL system in triggering the apoptosis. The apoptogenic activity of p-coumaric acid is more potent in malignant Jurkat T cells than in normal human peripheral T cells. Together, these results demonstrated that p-coumaric acid-induced apoptogenic activity in Jurkat T cellswas mediated by Bak activation, ${\Delta}{\psi}m$ loss, and subsequent activation of multiple caspases such as caspase-9, -3, -7, and-8, and PARP degradation, which could be regulated by anti-apoptotic protein Bcl-2.
Keywords
Apoptosis; cytotoxicity; p-coumaric acid; caspase cascade; leukemia Jurkat T cells; Bcl-2;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Waterhouse, N. J., J. C. Goldstein, O. von Ahsen, M. Schuler, D. D. Newmeyer, and D. R. Green. 2001. Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J. Cell Biol. 153, 319-328.   DOI   ScienceOn
2 Yang, J., X. Liu, K. Bhalla, C. N. Kim, A. M. Ibrado, J. Cai, T. I. Peng, D. P. Jones, and X. Wang. 1997. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129-1132.   DOI
3 Zamzami, N., P. Marchetti, M. Castedo, C. Zanin, J. L. Vayssiere, P. X. Petit, and G. Kroemer. 1995. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J. Exp. Med. 181, 1661-1672.   DOI   ScienceOn
4 Mathew, S. and T. E. Abraham. 2004. Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Cri. Rev. Biotechnol. 24, 59-83.   DOI   ScienceOn
5 Muller, M., S. Strand, H. Hug, E. M. Heinemann, H. Walczak, W. J. Hofmann, W. Stremmel, P. H. Krammer, and P. R. Galle. 1997. Drug-induced apoptotsis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J. Clin. Invest. 99, 403-413.   DOI   ScienceOn
6 Nagarkatti, N. and B. A. Davis. 2003. Tamoxifen induces apoptosis in $Fas^{+}$ tumor cells by upregulating the expression of Fas ligand. Cancer Chemother. Pharmacol. 51, 284-290.
7 Nardini, M., M. D'Aquino, G. Tomassi, V. Gentili, M. Di Felice, and C. Scaccini. 1995. Inhibition of human low-density- lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free Radic. Biol. Med. 19, 541-552.   DOI   ScienceOn
8 Nystrom, L., M. Makinen, A. M. Lampi, and V. Piironen. 2005. Antioxidant activity of steryl ferulate extracts from rye and wheat bran. J. Agric. Food Chem. 53, 2503-2510.   DOI   ScienceOn
9 Park, H. S., D. Y. Jun, C. R. Han, H. J. Woo, and Y. H. Kim. 2011. Proteasome inhibitor MG132-induced apoptosis via ER stress-mediated apoptotic pathway and its potentiation by protein tyrosine kinase $p56^{lck}$ in human Jurkat T cells. Biochem. Pharmacol. 82, 1110-1125.   DOI   ScienceOn
10 Park, S. K. and J. C. Park. 1994. Antimicrobial activity of extracts and coumaric acid isolated from Artemisia princeps var. orientalis. Kor. J. Biotechnol. Bioeng. 5, 506-511.   과학기술학회마을
11 Saleh, A., S. M. Srinivasula, S. Acharya, R. Fishel, and E. S. Alnemri. 1999. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J. Biol. Chem. 274, 17941-17945.   DOI
12 Jun, D. Y, J. S. Kim, H. S. Park, C. R. Han, Z. Fang, M. H. Woo, I. K. Rhee, and Y. H. Kim. 2007. Apoptogenic activity of auraptene of Zanthoxylum schinifolium toward human acute leukemia Jurkat T cells is associated with ER stress-mediated caspase-8 activation that stimulates mitochondria- dependent or -independent caspase cascade. Carcinogenesis 28, 1303-1313.   DOI   ScienceOn
13 Juo, P., S. Woo, C. J. Kuo, P. Signorelli, H. P. Biemann, Y. A. Hannun, and J. Blenis. 1999. FADD is required for multiple signaling events downstream of the receptor Fas. Cell Growth Differ. 10, 797-804.
14 Kroemer, G., L. Galluzzi, and C. Brenner. 2007. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99-163.   DOI   ScienceOn
15 Kim, Y. H., J. J. Proust, M. J. Buchholz, F. J. Chrest, and A. A. Nordin. 1992. Expression of the murine homologue of the cell cycle control protein $p34^{cdc2}$ in T lymphocytes. J. Immunol. 149, 17-23.
16 Kluck, R. M., E. Bossy-Wetzel, D. R. Green, and D. D. Newmeyer. 1997. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132-1136.   DOI   ScienceOn
17 Kroemer, G., and J. C. Reed. 2000. Mitochondrial control of cell death. Nat. Med. 6, 513-519.   DOI   ScienceOn
18 Laranjinha, J, O. Vierira, L. Almeida, and V. Madeira. 1996. Inhibition of metmyoglobin/$H_{2}O_{2}$- dependent low density lipoprotein lipid peroxidation by naturally occurring phenolic acids. Biochem. Pharmacol. 51, 395-402.   DOI   ScienceOn
19 Li, H., H. Zhu, C. Xu, and J. Yuan. 1998. Cleavage of Bid by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501.   DOI   ScienceOn
20 Li, P., D. Nijhawan, I. Budihardjo, S. M. Srinivasula, M. Ahmad, E. S. Alnemri, and X. Wang. 1997. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489.   DOI   ScienceOn
21 Lowe, S. W. and A. W. Lin. 2000. Apoptosis in cancer. Carcinogenesis 21, 485-495.   DOI
22 Ferguson, L. R., S. T. Zhu, and P. J. Harris. 2005. Antioxidant and antigenotoxic effects of plant cell wall hydroxycinnamic acids in cultured HT-29 cells. Mol. Nutr. Food Res. 49, 585-693.   DOI   ScienceOn
23 Friesen, C., I. Herr, P. H. Krammer, and K. M. Debatin. 1996. Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nat. Med. 2, 574-578.   DOI   ScienceOn
24 Herrmann, K. 1989. Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Cri. Rev. Food Sci. Nutr. 28, 315-347.   DOI   ScienceOn
25 Gross, A., J. M. McDonnell, and S. J. Korsmeyer. 1999. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899-1911.   DOI   ScienceOn
26 Hacker, G. 2000. The morphology of apoptosis. Cell Tissue Res. 301, 5-17.   DOI   ScienceOn
27 Hannun, Y. A. 1997. Apoptosis and the Dilemma of cancer chemotherapy. Blood 89, 1845-1853.
28 Huang, M. T., R. C. Smart, C. Q. Wong, and A. H. Conney. 1988. Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 48, 5941-5946.
29 Hudson, E. A., P. A. Dinh, T. Kokubun, M. S. Simmonds, and A. Gescher. 2000. Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol. Biomarkers Prev. 9, 1163-1170.
30 Johnstone, R. W, A. A. Ruefli, and S. W. Lowe. 2002. Apoptosis: A link between cancer genetics and chemotherapy. Cell 108, 153-164.   DOI   ScienceOn
31 Jun, D. Y., H. S. Park, J. S. Kim, J. S. Kim, W. Park, B. H. Song, H. S. Kim, D. Taub, and Y. H. Kim. 2008. $17\alpha$-Estradiol arrests cell cycle progression at G2/M and induces apoptotic cell death in human acute leukemia Jurkat T cells. Toxicol. Appl. Pharmacol. 231, 401-412.   DOI   ScienceOn
32 Chen, J. H., Y. Shao, M. T. Huang, C. K. Chin, and C. T. Ho. 1996. Inhibitory effect of caffeic acid phenethyl ester on human leukemia HL-60 cells. Cancer Lett. 108, 211-214.   DOI   ScienceOn
33 Adams, J. M. and S. Cory. 2007. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr. Opin. Immunol. 19, 488-496.   DOI   ScienceOn
34 An, S. M., S. I. Lee, S. W. Choi, S. W. Moon, and Y. C. Boo. 2008. p-Coumaric acid, a constituent of Sasa quelpaertensis Nakai, inhibits cellular melanogenesis stimulated by α-melanocyte stimulating hormone. Br. J. Dermatol. 159, 292-299.   DOI   ScienceOn
35 Chan, R. I., R. H. San, and H. F. Stich. 1986. Mechanism of inhibition of N-methyl-N'-nitrosoguanidine-induced mutagenesis by phenolic compounds. Cancer Lett. 31, 27-34.   DOI   ScienceOn
36 Chipuk, J. E. and D. R. Green. 2008. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol. 18, 157-164.   DOI   ScienceOn
37 Chipuk, J. E., L. Bouchier-Hayes, and D. R. Green. 2006. Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ. 13, 1396-1402.   DOI   ScienceOn
38 Chipuk, J. E., T. Moldoveanu, F. Llambi, M. J. Parsons, and D. R. Green. 2010. The BCL-2 family reunion. Mol. Cell 37, 299-310.   DOI   ScienceOn
39 Czabotar, P. E., P. M. Colman, and D. C. Huang. 2009. Bax activation by Bim? Cell Death Differ. 16, 1187-1191.   DOI   ScienceOn
40 Slee, E. A., H. Zhu, S. C. Chow, M. MacFarlane, D. W. Nicholson, and G. M. Cohen. 1996. Benzyloxycarbonyl- Val-Ala-Asp (OMe) fluoromethylketone (z-VAD-fmk) inhibits apoptosis by blocking the processing CPP32. Biochem. J. 315, 21-24.
41 Tada-Oikawa, S., S. Oikawa, and S. Kawanishi. 1998. Role of ultraviolet A-induced oxidative DNA damage in apoptosis via loss of mitochondrial membrane potential and caspase- 3 activation, Biochem. Biophys. Res. Commun. 247, 693-696.   DOI   ScienceOn
42 Tait, S. W. and D. R. Green. 2010. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11, 621-632.   DOI   ScienceOn