• 제목/요약/키워드: wild type

검색결과 2,378건 처리시간 0.035초

Salmonella enterica serovars Enteritidis, Gallinarum 및 Typhimurium의 마우스 면역반응의 비교평가 (Comparative evaluation of the murine immune responses to Salmonella enterica serovars Enteritidis, Gallinarum and Typhimurium infection)

  • 김기주;김두리;선지선;박소연;조영재;고현정;주홍구;한태욱
    • 대한수의학회지
    • /
    • 제53권2호
    • /
    • pp.95-101
    • /
    • 2013
  • The study was carried out to evaluate and compare the immune responses in mice experimentally infected with either wild-type or isogenic mutants of Salmonella enterica serovars Enteritidis (SE), Salmonella Typhimurium (ST) and Gallinarum (SG). The mutant strains were constructed by allelic replacement of some virulence-associated genes in the wild-type strains. Seven-week-old female BALB/c mice were orally or intraperitoneally inoculated by injecting bacterial suspension. To evaluate the immune responses, enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunospot (ELISPOT) assay were conducted with serum and fecal samples. As a result, the mice group infected orally with the SE mutant strain showed the highest level of specific IgA-secreting splenocytes, compared to the other groups. The peritoneally injected groups showed the greater levels of IgG1 than the orally injected groups, which was in a good agreement with the previous studies. In addition, the mutant infected groups had the similar secretion levels of antibodies with the wild-type infected groups. These results demonstrated that the SE mutant strain elicited humoral immune response as much as wild-type, implying that it can be useful as a delivery vehicle as well as a candidate of a live attenuated vaccine.

Possible Negative Effect of Pigmentation on Biosynthesis of Polyketide Mycotoxin Zearalenone in Gibberella zeae

  • Jung Sun-Yo;Kim Jung-Eun;Yun Sung-Hwan;Lee Yin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권9호
    • /
    • pp.1392-1398
    • /
    • 2006
  • We investigated a possible coordination between the biosyntheses of two polyketides in the cereal head blight fungus Gibberella zeae, zearalenone (ZEA) and aurofusarin (AUR), which are catalyzed by the polyketide synthases (PKS) PKS4/PKS13 and PKS12, respectively. To determine if the production of one polyketide influences that of the other, we used four different transgenic strains of G zeae; three were deficient for either ZEA or AUR or both, and one was an AUR-overproducing strain. The mycelia of both the wild-type and ${\Delta}PKS4$ strain deficient for ZEA produced AUR normally, whereas the mycelia of both the ${\Delta}PKS12$ and ${\Delta}PKS4::{\Delta}PKS12$ strain showed no AUR accumulation. All the examined deletion strains caused necrotic spots on the surface of com kernels and were found to produce the nonpolyketide mycotoxins trichothecenes to the same amount as the wild-type strain. In contrast, the AUR-deficient ${\Delta}PKS12$ strains produced greater quantities of ZEA and its derivatives than the wild-type progenitor on both a rice substrate and a liquid medium; the AUR-overproducing strain did not produce ZEA on either medium. Furthermore, the expression of both PKS4 and PKS13 was induced earlier in the ${\Delta}PKS12$ strains than in the wild-type strain, and there was no difference in the transcription of PKS12 between the two strains. Therefore, these results indicate that the ZEA biosynthetic pathway is negatively regulated by the accumulation of another polyketide (AUR) in G zeae.

Characterization of Yakju Brewed from Glutinous Rice and Wild-Type Yeast Strains Isolated from Nuruks

  • Kim, Hye-Ryun;Kim, Jae-Ho;Bae, Dong-Hoon;Ahn, Byung-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권12호
    • /
    • pp.1702-1710
    • /
    • 2010
  • Korean traditional rice wines yakju and takju are generally brewed with nuruk as the source of the saccharogenic enzymes by natural fermentation. To improve the quality of Korean rice wine, the microorganisms in the nuruk need to be studied. The objective of this research was to improve the quality of Korean wine with the wild-type yeast strains isolated from the fermentation starter, nuruk. Only strain YA-6 showed high activity in 20% ethanol. Precipitation of Y89-5-3 was similar to that of very flocculent yeast (>80%) at 75.95%. Using 18S rRNA sequencing, all 10 strains were identified as Saccharomyces cerevisiae. Volatile compounds present in yakju were analyzed by gas chromatography-mass selective detector. The principal component analysis (PCA) of the volatile compounds grouped long-chain esters on the right side of the first principal component, PC1; these compounds were found in yakju that was made with strains YA-6, Y89-5-3, Y89-5-2, Y90-9, and Y89-1-1. On the other side of PC1 were short-chain esters; these compounds were found in wines that were brewed with strains Y183-2, Y268-3, Y54-3, Y98-4, and Y88-4. Overall, the results indicated that using different wild-type yeast strains in the fermentation process significantly affects the chemical characteristics of the glutinous rice wine.

Equilibrium Binding of Wild-type and Mutant Drosophila Heat Shock Factor DNA Binding Domain with HSE DNA Studied by Analytical Ultracentrifugation

  • Park, Jin-Ku;Kim, Soon-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1839-1844
    • /
    • 2012
  • We have investigated binding between wild-type and mutant Heat Shock Factor (HSF) DNA binding domains (DBDs) with 17-bp HSE containing a central 5'-NGAAN-3' element by equilibrium analytical ultracentrifugation using multi-wavelength technique. Our results indicate that R102 plays critical role in HSE recognition and the interactions are characterized by substantial negative changes of enthalpy (${\Delta}H^0_{\theta}=-9.90{\pm}1.13kcal\;mol^{-1}$) and entropy (${\Delta}S^0_{\theta}=-12.46{\pm}3.77cal\;mol^{-1}K^{-1}$) with free energy change, ${\Delta}G^0_{\theta}$ of $-6.15{\pm}0.03kcal\;mol^{-1}$. N105 plays minor role in the HSE interactions with ${\Delta}H^0_{\theta}$ of $-2.54{\pm}1.65kcal\;mol^{-1}$, ${\Delta}S^0_{\theta}$ of $19.28{\pm}5.50cal\;mol^{-1}K^{-1}$ and ${\Delta}G^0_{\theta}$ of $-8.35{\pm}0.05kcal\;mol^{-1}$, which are similar to those observed for wild-type DBD:HSE interactions (${\Delta}H^0_{\theta}=-3.31{\pm}1.86kcal\;mol^{-1}$, ${\Delta}S^0_{\theta}=17.38{\pm}6.20cal\;mol^{-1}K^{-1}$ and ${\Delta}G^0_{\theta}=-8.55{\pm}0.06kcal\;mol^{-1}$) indicating higher entropy contribution for both wild-type and N105A DBD bindings to the HSE.

Improvement in the Catalytic Activity of ${\beta}$-Agarase AgaA from Zobellia galactanivorans by Site-Directed Mutagenesis

  • Lee, Seung-Woo;Lee, Dong-Geun;Jang, Min-Kyung;Jeon, Myong-Je;Jang, Hye-Ji;Lee, Sang-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권11호
    • /
    • pp.1116-1122
    • /
    • 2011
  • In this study, site-directed mutagenesis was performed on the ${\beta}$-agarase AgaA gene from Zobellia galactanivorans to improve its catalytic activity and thermostability. The activities of three mutant enzymes, S63K, C253I, and S63K-C253I, were 126% (1,757.78 U/mg), 2.4% (33.47 U/mg), and 0.57% (8.01 U/mg), respectively, relative to the wild-type ${\beta}$-agarase AgaA (1,392.61 U/mg) at $40^{\circ}C$. The stability of the mutant S63K enzyme was 125% of the wild-type up to $45^{\circ}C$, where agar is in a sol state. The mutant S63K enzyme produced 166%, 257%, and 220% more neoagarohexaose, and 230%, 427%, and 350% more neoagarotetraose than the wild-type in sol, gel, and nonmelted powder agar, respectively, at $45^{\circ}C$ over 24 h. The mutant S63K enzyme produced 50% more neoagarooligosaccharides from agar than the wild-type ${\beta}$-agarase AgaA from agarose under the same conditions. Thus, mutant S63K ${\beta}$-agarase AgaA may be useful for the production of functional neoagarooligosaccharides.

Modulation of the Regioselectivity of a Thermotoga neapolitana $\beta$-Glucosidase by Site-Directed Mutagenesis

  • Choi, Ki-Won;Park, Kyung-Min;Jun, So-Young;Park, Cheon-Seok;Park, Kwan-Hwa;Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.901-907
    • /
    • 2008
  • Thermotoga neapolitana $\beta$-glucosidase (BglA) was subjected to site-directed mutagenesis in an effort to increase its ability to synthesize arbutin derivatives by transglycosylation. The transglycosylation reaction of the wild-type enzyme displays major ${\beta}(1,6)$ and minor ${\beta}(1,3)$ or ${\beta}(1,4)$ regioselectivity. The three mutants, N291T, F412S, and N291T/F412S, increased the ratio of transglycosylation/hydrolysis compared with the wild-type enzyme when pNPG and arbutin were used as a substrate and an acceptor, respectively. N291T and N219T/F412S had transglycosylation/hydrolysis ratios about 3- and 8-fold higher, respectively, than that of the wild-type enzyme. This is due to the decreased hydrolytic activity of the mutant rather than increased transglycosylation activity. Interestingly, N291T showed altered regioselectivity, as well as increased transglycosylation products. TLC analysis of the transglycosylation products indicated that N291T retained its ${\beta}(1,3)$ regioselectivity, but lost its ${\beta}(1,4)$ and ${\beta}(1,6)$ regioselectivity. The altered regioselectivity of N291T using two other acceptors, esculin and salicin, was also confirmed by TLC. The major transglycosylation products of the wild type and N291T mutant were clearly different. This result suggests that Asn-291 is highly involved in the catalytic mechanism by controlling the transglycosylation reaction.

Role of the Salt Bridge Between Arg176 and Glu126 in the Thermal Stability of the Bacillus amyloliquefaciens ${\alpha}$-Amylase (BAA)

  • Zonouzi, Roseata;Khajeh, Khosro;Monajjemi, Majid;Ghaemi, Naser
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권1호
    • /
    • pp.7-14
    • /
    • 2013
  • In the Bacillus amyloliquefaciens ${\alpha}$-amylase (BAA), the loop (residues 176-185; region I) that is the part of the calcium-binding site (CaI, II) has two more amino acid residues than the ${\alpha}$-amylase from Bacillus licheniformis (BLA). Arg176 in this region makes an ionic interaction with Glu126 from region II (residues 118-130), but this interaction is lost in BLA owing to substitution of R176Q and E126V. The goal of the present work was to quantitatively estimate the effect of ionic interaction on the overall stability of the enzyme. To clarify the functional and structural significance of the corresponding salt bridge, Glu126 was deleted (${\Delta}$E126) and converted to Val (E126V), Asp (E126D), and Lys (E126K) by site-directed mutagenesis. Kinetic constants, thermodynamic parameters, and structural changes were examined for the wild-type and mutated forms using UV-visible, atomic absoption, and fluorescence emission spectroscopy. Wild-type exhibited higher $k_{cat}$ and $K_m$ but lower catalytic efficiency than the mutant enzymes. A decreased thermostability and an increased flexibility were also found in all of the mutant enzymes when compared with the wild-type. Additionally, the calcium content of the wild-type was more than ${\Delta}E126$. Thus, it may be suggested that ionic interaction could decrease the mobility of the discussed region, prevent the diffusion of cations, and improve the thermostability of the whole enzyme. Based on these observations, the contribution of loop destabilization may be compensated by the formation of a salt bridge that has been used as an evolutionary mechanism or structural adaptation by the mesophilic enzyme.

Role of eptC in Biofilm Formation by Campylobacter jejuni NCTC11168 on Polystyrene and Glass Surfaces

  • Lim, Eun Seob;Kim, Joo-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권9호
    • /
    • pp.1609-1616
    • /
    • 2017
  • The complex roles of cell surface modification in the biofilm formation of Campylobacter jejuni, a major cause of worldwide foodborne diarrheal disease, are poorly understood. In a screen of mutants from random transposon mutagenesis, an insertional mutation in the eptC gene (cj0256) resulted in a significant decrease in C. jejuni NCTC11168 biofilm formation (<20%) on major food contact surfaces, such as polystyrene and borosilicate glass, when compared with wild-type cells (p < 0.05). In C. jejuni strain 81-176, the protein encoded by eptC modified cell surface structures, such as lipid A, the inner core of lipooligosaccharide, and the flagellar rod protein (FlgG), by attaching phosphoethanolamine. To assess the role of eptC in C. jejuni NCTC11168, adherence and motility tests were performed. In adhesion assays with glass surfaces, the eptC mutant exhibited a $0.77log\;CFU/cm^2$ decrease in adherence compared with wild-type cells during the initial 2 h of the assay (p < 0.05). These results support the hypothesis that the modification of cell surface structures by eptC affects the initial adherence in biofilm formation of C. jejuni NCTC11168. In motility tests, the eptC mutant demonstrated reduced motility when compared with wild-type cells, but wild-type cells with the transposon inserted in a gene irrelevant to biofilm formation (cj1111c) also exhibited decreased motility to a similar extent as the eptC mutant. This suggests that although eptC affects motility, it does not significantly affect biofilm formation. This study demonstrates that eptC is essential for initial adherence, and plays a significant role in the biofilm formation of C. jejuni NCTC11168.

Structural Characterization of Physiologically Active Polysaccharides from Natural Products (Arabidopsis)

  • Shin, Kwang-Soon;Darvill, Alan G.
    • Food Science and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.447-452
    • /
    • 2006
  • To determine the functions of specific cell wall polysaccharides, polysaccharides of three mutants, mur3-1, mur3-2, and mur3-3, obtained from Arabidopsis wild type, underwent structural characterization. Upon sequential separation of pectins (RG-I and RG-II) and cross-linking glycans (xyloglucan, XG), only XG was affected by the mud mutation. Wild-type XG contained a considerable amount of fucose, whereas the fucose level in mur3 XGs was less than 20% that of wild type. Further analysis of XGs by matrix-assisted laser-induced/ionization time-of-flight (MALDI-TOF) mass spectrometry indicated that mud lines considerably or completely lost the fucosylated XG oligosaccharides such as XXFG and XLFG and the double-galactosylated oligosaccharide XLLG $^1H$-NMR spectroscopic analyses of the XG oligosaccharides from mur3-3 plant revealed the absence of fucose and a galactose level in the galactosylated side chain that was reduced by 40% compared to that of Arabidopsis wild-type plant. In contrast, 85% less fucose and a slight loss of galactose were observed in the mur3-1 and mur3-2 lines which show normal growth habit. Of the three Arabidopsis mur3 lines studied here, mur3-3 is disrupted by a T-DNA insertion in the exon of MUR3 which encodes XG-specific galactosyltransferase, and exhibits slight dwarfism. These results indicated that the T-DNA insertion at the MUR3 locus did not induce the complete loss of galactose in XG, and that galactose, rather than fucose, in the XG side chains made a major contribution to overall wall strength.

Sensitivity of a Hyperactivated Ras Mutant in Response to Hydrogen Peroxide, Menadione and Paraquat

  • 채경희;이경희
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권11호
    • /
    • pp.1202-1206
    • /
    • 1998
  • We have explored the impact of altering the Ras-cAMP pathway on cell survival upon oxidative exposures. A hyperactivated Ras mutant of Saccharomyces cerevisiae, intrinsically more sensitive to heat shock than the wild type, was investigated with regard to oxidative stress. In this paper we report that the response of iral, ira2-deleted mutant (IR2.53) to an oxidant, such as hydrogen peroxide (H2O2) or menadione is more sensitive than that of the wild type. IR2.53 showed a dramatic decrease in survival rate when challenged with 0.1 mM H2O2 for 30 min. The greater sensitivity of IR2.53 was also noticed with treatment of 0.01 mM menadione. Prior to oxidative stresses by these oxidants, both the wild type and the mutant were preconditioned with a mild heat shock (37 ℃, 30 min), resulting in improved survivals against oxidative stresses. Rescue of IR2.53 from menadione stress by heat pretreatment was more clearly demonstrated than that from H2O2 treatment. On the other hand, no significant difference was observed between the wild type and the IR2.53 mutant in their survival rates upon paraquat treatments. These findings imply that the mechanism by which H2O2 and menadione put forth their oxidative effects may be closely associated with the cAMP-Ras pathway whereas that of paraquat is independent of the Ras pathway. Finally, the level of glutathione (GSH) was measured enzymatically as an indicator of antioxidation and compared with the survival rate. Taken all these together, this study provides an insight into a mechanism of the Ras pathway regulated by several oxidants and suggests that the Ras pathway plays a crucial role in protection of cell damage following oxidative stress.