Browse > Article
http://dx.doi.org/10.4014/jmb.1107.07001

Improvement in the Catalytic Activity of ${\beta}$-Agarase AgaA from Zobellia galactanivorans by Site-Directed Mutagenesis  

Lee, Seung-Woo (Department of Pharmaceutical Engineering, College of Medical Life Sciences, Silla University)
Lee, Dong-Geun (Department of Pharmaceutical Engineering, College of Medical Life Sciences, Silla University)
Jang, Min-Kyung (Department of Pharmaceutical Engineering, College of Medical Life Sciences, Silla University)
Jeon, Myong-Je (Department of Pharmaceutical Engineering, College of Medical Life Sciences, Silla University)
Jang, Hye-Ji (Department of Pharmaceutical Engineering, College of Medical Life Sciences, Silla University)
Lee, Sang-Hyeon (Department of Pharmaceutical Engineering, College of Medical Life Sciences, Silla University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.11, 2011 , pp. 1116-1122 More about this Journal
Abstract
In this study, site-directed mutagenesis was performed on the ${\beta}$-agarase AgaA gene from Zobellia galactanivorans to improve its catalytic activity and thermostability. The activities of three mutant enzymes, S63K, C253I, and S63K-C253I, were 126% (1,757.78 U/mg), 2.4% (33.47 U/mg), and 0.57% (8.01 U/mg), respectively, relative to the wild-type ${\beta}$-agarase AgaA (1,392.61 U/mg) at $40^{\circ}C$. The stability of the mutant S63K enzyme was 125% of the wild-type up to $45^{\circ}C$, where agar is in a sol state. The mutant S63K enzyme produced 166%, 257%, and 220% more neoagarohexaose, and 230%, 427%, and 350% more neoagarotetraose than the wild-type in sol, gel, and nonmelted powder agar, respectively, at $45^{\circ}C$ over 24 h. The mutant S63K enzyme produced 50% more neoagarooligosaccharides from agar than the wild-type ${\beta}$-agarase AgaA from agarose under the same conditions. Thus, mutant S63K ${\beta}$-agarase AgaA may be useful for the production of functional neoagarooligosaccharides.
Keywords
${\beta}$-Agarase AgaA; activity improvement; site-directed mutagenesis; Zobellia galactanivorans;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Allouch, J., M. Jam, W. Helbert, T. Barbeyron, B. Kloareg, B. Henrissat, and M. Czjzek. 2003. The three-dimensional structures of two $\beta$-agarases. J. Biol. Chem. 278: 47171-47180.   DOI
2 Allouch, J., W. Helbert, B. Henrissat, and M. Czjzek. 2004. Parallel substrate binding sites in a $\beta$-agarase suggest a novel mode of action on double-helical agarose. Structure. 12: 623- 632.   DOI   ScienceOn
3 Araki, C. 1959. Seaweed polysaccharides, pp. 15-30. In M. L. Wolfrom (ed.). Carbohydrate Chemistry of Substances of Biological Interest. Proceedings of the 4th International Congress of Biochemistry. International Union of Biochemistry and Molecular Biology, London.
4 Bannikova, G. E., S. A. Lopatin, V. P. Varlamov, B. B. Kuznetsov, I. V. Kozina, M. L. Miroshnichenko, et al. 2008. The thermophilic bacteria hydrolyzing agar: Characterization of thermostable agarase. J. Biol. Chem. Microbiol. 44: 366-369.
5 Cao, L. 2005. Immobilised enzymes: Science or art? Curr. Opin. Chem. Biol. 9: 217-226.   DOI   ScienceOn
6 Duckworth, M. and W. Yaphe. 1971. Structure of agar : Part I. Fractionation of a complex mixture of polysaccharides. Carbohydr. Res. 16: 189-197.   DOI   ScienceOn
7 Fox, R. J. and G. W. Huisman. 2008. Enzyme optimization: Moving from blind evolution to statistical exploration of sequence-function space. Trends Biotechnol. 26: 132-138.   DOI   ScienceOn
8 Groleau, D. and W. Yaphe. 1977. Enzymatic hydrolysis of agar: Purification and characterization of $\beta$-neoagarotetraose hydrolase from Pseudomonas atlantica. Can. J. Microbiol. 23: 672-679.   DOI   ScienceOn
9 Jam, M., D. Flament, J. Allouch, P. Potin, L. Yhion, B. Kloareg, et al. 2005. The endo-$\beta$-agarases AgaA and AgaB from the marine bacterium Zobellia galactanivorans: Two paralogue enzymes with different molecular organizations and catalytic behaviours. Biochem. J. 385: 703-713.   DOI   ScienceOn
10 Jang, M. K., S. W. Lee, D. G. Lee, N. Y. Kim, K. H. Yu, H. J. Jang, et al. 2010. Enhancement of the thermostability of a recombinant beta-agarase, AgaB, from Zobellia galactanivorans by random mutagenesis. Biotechnol. Lett. 32: 943-949.   DOI   ScienceOn
11 Kohno, T., H. Kitagawa, and T. Hiraga. 1990. Production of hetero-oligosaccharides. pp. 87-105. In Gijutsu, Kenkyu, Kukami (eds.). Shokuhin Sangyo Bioreactor System, Jissen Bioreactor, Tokyo.
12 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680- 685.   DOI   ScienceOn
13 Lee, D. G., M. K. Jang, O. H. Lee, N. Y. Kim, S. A. Ju, and S. H. Lee. 2008. Over-production of a glycoside hydrolase family 50 beta-agarase from Agarivorans sp. JA-1 in Bacillus subtilis and the whitening effect of its product. Biotechnol. Lett. 30: 911-918.   DOI   ScienceOn
14 Sambrook, J., E. Fritsch, and T. Maniatis. 1989. Molecular Cloning, pp. 23-38. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
15 Lee, D. G., G. T. Park, N. Y. Kim, E. J. Lee, M. K. Jang, Y. G. Shin, et al. 2006. Cloning, expression, and characterization of a glycoside hydrolase family 50 beta-agarase from a marine Agarivorans isolate. Biotechnol. Lett. 28: 1925-1932.   DOI   ScienceOn
16 Morley, K. L. and R. J. Kazlauskas. 2005. Improving enzyme properties: When are closer mutations better? Trends Biotechnol. 23: 231-237.   DOI   ScienceOn
17 Ohta, Y., Y. Hatada, Y. Nogi, Z. Li, S. Ito, and K. Horikoshi. 2004. Cloning, expression, and characterization of a glycoside hydrolase family 86 $\beta$-agarase from a deep-sea Microbulbiferlike isolate. Appl. Microbiol. Biotechnol. 66: 266-275.   DOI   ScienceOn
18 Shi, C., X. Lu, C. Ma, Y. Ma, X. Fu, and W. Yu. 2008. Enhancing the thermostability of a novel $\beta$-agarase AgaB through directed evolution. Appl. Biochem. Biotechnol. 151: 51-59.   DOI   ScienceOn
19 Siehl, D. L., L. A. Castle, R. Gorton, and R. J. Keenan. 2007. The molecular basis of glyphosate resistance by an optimized microbial acetyltransferase. J. Biol. Chem. 282: 11446-11455.   DOI
20 Somogi, M. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19-23.
21 Sylvestre, J., H. Chautard, F. Cedrone, and M. Delcourt. 2006. Directed evolution of biocatalysts. Org. Process Res. Dev. 10: 562-571.   DOI   ScienceOn