Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.6.1839

Equilibrium Binding of Wild-type and Mutant Drosophila Heat Shock Factor DNA Binding Domain with HSE DNA Studied by Analytical Ultracentrifugation  

Park, Jin-Ku (Department of Chemistry, Mokpo National University)
Kim, Soon-Jong (Department of Chemistry, Mokpo National University)
Publication Information
Abstract
We have investigated binding between wild-type and mutant Heat Shock Factor (HSF) DNA binding domains (DBDs) with 17-bp HSE containing a central 5'-NGAAN-3' element by equilibrium analytical ultracentrifugation using multi-wavelength technique. Our results indicate that R102 plays critical role in HSE recognition and the interactions are characterized by substantial negative changes of enthalpy (${\Delta}H^0_{\theta}=-9.90{\pm}1.13kcal\;mol^{-1}$) and entropy (${\Delta}S^0_{\theta}=-12.46{\pm}3.77cal\;mol^{-1}K^{-1}$) with free energy change, ${\Delta}G^0_{\theta}$ of $-6.15{\pm}0.03kcal\;mol^{-1}$. N105 plays minor role in the HSE interactions with ${\Delta}H^0_{\theta}$ of $-2.54{\pm}1.65kcal\;mol^{-1}$, ${\Delta}S^0_{\theta}$ of $19.28{\pm}5.50cal\;mol^{-1}K^{-1}$ and ${\Delta}G^0_{\theta}$ of $-8.35{\pm}0.05kcal\;mol^{-1}$, which are similar to those observed for wild-type DBD:HSE interactions (${\Delta}H^0_{\theta}=-3.31{\pm}1.86kcal\;mol^{-1}$, ${\Delta}S^0_{\theta}=17.38{\pm}6.20cal\;mol^{-1}K^{-1}$ and ${\Delta}G^0_{\theta}=-8.55{\pm}0.06kcal\;mol^{-1}$) indicating higher entropy contribution for both wild-type and N105A DBD bindings to the HSE.
Keywords
Heat shock factor; HSF:HSE interaction; Thermodynamic parameters; Analytical ultracentrifuge; Multi-wavelength scan;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Hardy, J. A.; Walsh, S. T. R.; Nelson, H. C. M. J. Mol. Biol. 2000, 295, 393.   DOI
2 Akerfelt, M.; Morimoto, R. I.; Sistonen, L. Nat. Rev. Mol. Cell Biol. 2010, 11, 545.   DOI   ScienceOn
3 Fujimoto, M.; Nakai, A. FEBS J. 2010, 277, 4112.   DOI
4 Littlefield, O.; Nelson, H. C. Nat. Struct. Biol. 1999, 6, 464.   DOI   ScienceOn
5 Park, J.; Kim, S.; Kim, S.-J. Bull. Korean Chem. Soc. 1999, 20, 636.
6 Kim, S.-J.; Tsukiyama, T.; Lewis, M. S.; Wu, C. Protein Sci. 1994, 3, 1040.   DOI
7 Lewis, M. S.; Shrager, R. I.; Kim, S.-J. In Modern Analytical Ultracentrifugation: Acquisition and Interpretation of Data for Biological and Synthetic Polymer Systems; Schuster, T. M., Laue, T. M., Eds.; Birkhuser Inc.: Boston, U.S.A., 1994; p 94.
8 Puglisi, J.; Tinoco, I., Jr. Methods Enzymol. 1990, 180, 304.
9 Durchschlag, H. In Thermodynamic Data for Biochemistry and Biotechnology; Hinz, H.-J., Ed.; Springer-Verlag: New York, USA, 1986; p 46.
10 Vuister, C. W.; Kim, S.-J.; Oresz, A.; Marquardt, J.; Wu, C.; Bax, A. Nat. Struct. Biol. 1994, 1, 605.   DOI   ScienceOn
11 Strang G. In Introduction to Applied Mathematics; Wellesley-Cambridge Press: Massachusetts, USA, 1986; p 138.
12 Clarke, C. W; Glew, D. N. Trans. Faraday Soc. 1966, 62, 539.   DOI
13 Park, S.; Kim, S.-J. Bull. Korean Chem. Soc. 2011, 32, 2125.   DOI
14 Lis, J.; Wu, C. Cell 1993, 74, 1.   DOI
15 Lindquist, S.; Craig, E. A. Annu. Rev. Genet. 1988, 22, 631.   DOI   ScienceOn
16 Richter, K.; Haslbeck, M.; Buchner, J. Mol. Cell 2010, 40, 253.   DOI
17 Wu, C. Ann. Rev. Cell & Dev. Biol. 1995, 11, 441.   DOI   ScienceOn
18 Fernandes, M.; Xiao, H.; Lis, J. T. Nucleic Acids Res. 1994, 22, 167.   DOI
19 Sakurai, H.; Takemori, Y. J. Biol. Chem. 2007, 282, 13334.   DOI
20 Harrison, C. J.; Bohm, A. A.; Nelson, H. C. Science 1994, 263, 224.   DOI