• Title/Summary/Keyword: wide temperature range

Search Result 1,005, Processing Time 0.029 seconds

An Integrated Humidity Sensor Based on Thin Polyimide Films (폴리이미드 박막을 이용한 집적화 습도센서)

  • An, Kwang-Ho;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1388-1390
    • /
    • 1994
  • A polyimide-based capacitive humidity sensor has been designed and fabricated using silicon integrated-circuit technology, and its performance measured. The sensor showed excellent linearity, low temperature coefficient, and low hysteresis over a wide range of relative humidity and temperature. The signal conditioning circuits for detecting relative humidity and converting it to voltage have been developed based on a charge redistribution between capacitors using switched -capacitors.

  • PDF

Low Temperature Thermoelectric Power Properties in La2.1Sr1.9Mn3O10 System (저온에서의 La2.1Sr1.9Mn3O10 세라믹스의 열기전력 특성)

  • 정우환
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.849-854
    • /
    • 2003
  • Temperature dependent thermoelectric power (TEP) of La$_{2.1}$ Sr$_{1.9}$ Mn$_3$O$_{10}$ system has been studied in the temperature range 80-373 K. In the low temperature ferromagnetic regime, TEP (S) follows an expression of formS=S$_{0}$ +S$_{1.5}$ T$^{1.5}$ +S$_4$T$^4$ over the wide range of temperature. The broad peak below the ferromagnetic transition and complicated temperature dependence of S may be understood on the basis of electron-magnon scattering as predicted for an itinerant ferromagnet. High temperature TEP data can be well fitted with Mott's small polaron hopping model.

Control of Working Temperature of Isothermal Magnetic Entropy Change in La0.8Nd0.2(Fe0.88Si0.12)13 by Hydrogen Absorption for Magnetic Refrigerants

  • Fujieda, S.;Fujita, A.;Fukamichi, K.;Suzuki, S.
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.150-154
    • /
    • 2013
  • $La_{1-z}Nd_z(Fe_{0.88}Si_{0.12})_{13}$ and their hydrides were investigated to obtain large magnetocaloric effects (MCEs) in a wide temperature range, including room temperature, for applications in magnetic refrigents. Since the magnetization change due to the itinerant-electron metamagentic (IEM) transition for $La_{1-z}Nd_z(Fe_{0.88}Si_{0.12})_{13}$ becomes larger with increasing z, the isothermal magnetic entropy change ${\Delta}S_m$ and the relative cooling power (RCP) are enhanced. In addition, the Curie temperatrue $T_C$ of $La_{0.8}Nd_{0.2}(Fe_{0.88}Si_{0.12})_{13}$ is increased from 193 to 319 K by hydrogen absorption, with the IEM transition. The maximum value of $-{\Delta}S_m$, $-{\Delta}S{_m}^{max}$, in a magnetic field change of 2 T for $La_{0.8}Nd_{0.2}(Fe_{0.88}Si_{0.12})_{13}H_{1.1}$ is about 23 J/kg K at $T_C$ = 288 K, which is larger than that of 19 J/kg K at $T_C$ = 276 K for $La(Fe_{0.88}Si_{0.12})_{13}H_{1.0}$. The value of RCP = 179 J/kg of the former is also larger than 160 J/kg of the latter. It is concluded that the partial substitution of Nd improves MCEs in a wide temperautre range, including room temperature.

Pyroelectricity of BaTiO3-doped PMNT ferroelectric system for pyroelectric sensor

  • Yeon Jung Kim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.380-385
    • /
    • 2023
  • In this study, an MPB PMNT system containing 0.05 to 0.10 wt.% BaTiO3 was synthesized using a traditional chemical method and its pyroelectricity was investigated. Pyroelectricity, dielectricity, and ferroelectricity of the synthesized BaTiO3-PMNT system were analyzed by heat treatment at 1240~1280 ℃ for 4 hours to evaluate its applicability as a pyroelectric sensor. Unlike the simple ABO3 ferroelectric, the BaTiO3-doped PMNT system exhibited phase transition characteristics over a wide temperature range typical of complex perovskite structures. Although no dramatic change could be confirmed depending on the amount of BaTiO3 added, stable pyroelectricity was maintained near room temperature and over a wide temperature range. When the amount of BaTiO3 added increased from 0.05BaTiO3-PMNT to 0.10BaTiO3-PMNT, the electric field slightly increased from 5.00×103 kV/m to 6.75×103 kV/m, and the maximum value of remanent polarization slightly increased from 0.223 C/m2 to 0.234 C/m2. The pyroelectric coefficients of 0.05BaTiO3-PMNT and 0.10BaTiO3- PMNT at room temperature were measured to be ~0.0084 C/m2K and ~0.0043 C/m2K, respectively. The relaxor ferroelectric properties of the BaTiO3-PMNT system were confirmed by analyzing the plot of Kmax/K versus (T-Tmax)γ. The BaTiO3-doped MPB PMNT system showed a distinct pyroelectric performance index at room temperature, and the values were Fv ~ 0.0362 m2/C, Fd ~ 0.575×10-4 Pa-1/2.

Peel Stength of the Acrylic Copolymer and Pressure Sensitive Adhesives (아크릴계 점착제의 박리강도와 점착부여제)

  • 김현중
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.79-88
    • /
    • 1999
  • The stability and performance (peel strength) of the acrylic copolymer and various modified rosin systems were investigated. The peel strength was measured over a wide range of scaling rates, and the influence of the viscoelasticity of the PSA(pressure sensitive adhesive) was considered. In the case of miscible systems, the peak of peel strength (PSA performance) over wide peel rates was changed and modified systematically with increasing glass transition temperature of the blends. The peak of the peel strength for blended systems shifts toward the lower rate side as glass transition temperature ($T_g$) of the blend increased. The influence of esterification of the rosin on performance and stability against deterioration was greatly modified by blending with rosin of glycerol ester and rosin pentaerythritol ester. The failure mode of the blend varies with the combination with acrylic copolymer and modified rosin, and cohesive failure was found at a lower peel rate while interfacial failure was found at a high peel rate. A few systems where a single Tg could be measured, despite the fact that two phases were observed microscopically, were detected.

  • PDF

A Study of the Ionization Characteristics of Xenon Gas by Shock Compression (충격 압축에 의한 제논 가스의 이온화 특성 연구)

  • Lee, D.S.;Shin, J.R.;Choi, J.Y.;Choi, Y.S.;Kim, H.W.
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.493-502
    • /
    • 2010
  • In this paper, the ionization characteristics of noble gases are studied numerically behind strong shock waves. As a first step, the equilibrium ionization mechanism of noble gases is modeled in wide ranges of temperature and pressure. As a next step the equilibrium ionization model is coupled with fluid dynamic equations to analyze the local thermodynamic equilibrium(LTE) ionization process at high temperature and pressure conditions behind the strong imploding shock waves. The ionization characteristics of xenon gas is studied in a wide range of test conditions with thermal radiation effects. Hence, the results give optimal conditions of maximum ionization and radiation behind the imploding shock waves.

Fabrication and Properties of Alloy Foam Materials using Metal Powders (금속 분말을 이용한 합금폼 제조 및 특성)

  • Choi, James;Kim, Ku-Hwan
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.489-493
    • /
    • 2010
  • Nickel-based and iron-based alloys have been developed and commercialized for a wide range of high performance applications at severely corrosive and high temperature environment. This alloy foam has an outstanding performance which is predestinated for diesel particulate filters, heat exchangers, and catalyst support, noise absorbers, battery, fuel cell, and flame distributers in burners in chemical and automotive industry. Production of alloy foam starts from high-tech coating technology and heat treatment of transient liquid-phase sintering in the high temperature. These technology allow for preparation of a wide variety of foam compositions such as Ni, Cr, Al, Fe on various pore size of pure nickel foam or iron foam in order for tailoring material properties to a specific application.

Gravitational Instability of Protoplanetary Disks around Low-mass Stars

  • Lee, Gain;Kim, Woong-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.50.1-50.1
    • /
    • 2021
  • Gravitational instability (GI) can produce massive gas giants on wide orbits by fragmentation of protoplanetary disks (PPDs). While most previous works focus on PPDs around solar mass stars, gas giants have been observed in systems with a wide range of stellar masses including M dwarfs. We use the GIZMO code to perform global three-dimensional simulations of self-gravitating disks around low-mass stars. Our models consider heating by turbulent viscosity and stellar irradiation and the β cooling occurring over the dynamical time. We run various models with differing disk-to-star mass ratio q and disk temperature. We find that strongly gravitating disks either produce spirals or undergo fragmentation. The minimum q value for fragmentation is 0.2-0.7, with a smaller value corresponding to a more massive star and/or a smaller disk. The critical q value depends somewhat sensitively on the disk temperature, suggesting that the stellar irradiation is an important factor in determining GI. We discuss our results in comparison with previous work as well as recent ALMA observations.

  • PDF

Temperature effect on seismic behavior of transmission tower-line system equipped with SMA-TMD

  • Tian, Li;Liu, Juncai;Qiu, Canxing;Rong, Kunjie
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 2019
  • Transmission tower-line system is one of most critical lifeline systems to cities. However, it is found that the transmission tower-line system is prone to be damaged by earthquakes in past decades. To mitigate seismic demands, this study introduces a tuned-mass damper (TMD) using superelastic shape memory alloy (SMA) spring for the system. In addition, considering the dynamic characteristics of both tower-line system and SMA are affected by temperature change. Particular attention is paid on the effect of temperature variation on seismic behavior. In doing so, the SMA-TMD is installed into the system, and its properties are optimized through parametric analyses. The considered temperature range is from -40 to $40^{\circ}C$. The seismic control effect of using SMA-TMD is investigated under the considered temperatures. Interested seismic performance indices include peak displacement and peak acceleration at the tower top and the height-wise deformation. Parametric analyses on seismic intensity and frequency ratio were carried out as well. This study indicates that the nonlinear behavior of SMA-TMD is critical to the control effect, and proper tuning before application is advisable. Seismic demand mitigation is always achieved in this wide temperature range, and the control effect is increased at high temperatures.

A Study on Temperature Compensation of Silicon Piezoresistive Pressure Sensor (실리콘 저항형 압력센서의 온도 보상에 관한 연구)

  • 최시영;박상준;김우정;정광화;김국진
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.563-570
    • /
    • 1990
  • A silicon pressure sensor made of a full bridge of diffused resistors was designed and fabricated using semiconductor integrated circuit process. Thin diaphragms with 30\ulcorner thickness were obtained using anisotropic wet chemical etching technique. Our device showed strong temperature dependence. Compensation networks are used to compensate for the temperature dependence of the pressure sensor. The bridge supply voltage having positive temperature coefficient by compensation networks was utilized against the negative temperature coefficient of bridge output voltage. The sensitivity fluctuation of pressure sensor before temperature compensation was -1700 ppm/\ulcorner, while it reduced to -710ppm\ulcorner with temperature compensation. Our result shows that the we could develop accurate and reliable pressure sensor over a wide temperature range(-20\ulcorner~50\ulcorner).

  • PDF