DOI QR코드

DOI QR Code

Low Temperature Thermoelectric Power Properties in La2.1Sr1.9Mn3O10 System

저온에서의 La2.1Sr1.9Mn3O10 세라믹스의 열기전력 특성

  • 정우환 (호원대학교 디지털영상정보학부)
  • Published : 2003.09.01

Abstract

Temperature dependent thermoelectric power (TEP) of La$_{2.1}$ Sr$_{1.9}$ Mn$_3$O$_{10}$ system has been studied in the temperature range 80-373 K. In the low temperature ferromagnetic regime, TEP (S) follows an expression of formS=S$_{0}$ +S$_{1.5}$ T$^{1.5}$ +S$_4$T$^4$ over the wide range of temperature. The broad peak below the ferromagnetic transition and complicated temperature dependence of S may be understood on the basis of electron-magnon scattering as predicted for an itinerant ferromagnet. High temperature TEP data can be well fitted with Mott's small polaron hopping model.

80-373 K의 온도범위에서 La$_{2.1}$ Sr$_{1.9}$ Mn$_3$O$_{10}$ 의 열기전력의 온도의존성을 조사하였다. 저온강자성영역에서 열기전력(S)의 온도의존성은 광범위한 온도영역에서 S=S$_{0}$ +S$_{1.5}$ T$^{1.5}$ +S$_4$T$^4$로 표현할 수 있었다. 강자성 전이온도 이하에서 열기전력의 완만한 피크 및 복잡한 온도의존성은 편력성 강자성체에서 예상되는 electron-magnon 산란으로 이해할 수 있으며, 고온에서의 열기전력은 Mott의 small polaron hopping 모델로 설명 가능하였다.

Keywords

References

  1. Phys. Rev. B. v.55 Local Structure, Transport, and Rare-earth Magnetism in the Ferrimagnetic Perovskite $Gd_{0.67}Ca_{0.33}MnO_3$ G.J.Snyder;C.H.Booth;F.Bridges;R.Hiskes;S.DiCarolis;M.R.Beasley;T.H.Geballe https://doi.org/10.1103/PhysRevB.55.6453
  2. J. Kor. Phys. Soc. v.36 Study of Low-temperature Magnetic properties of $Nd_{0.7}Sr_{0.3}MnO_3$ J.W.Park;M.S.Kim;J.G.Park;I.P.Swainson;H.C.Ri;H.J.Lee;K.H.Kim;T.W.Noh;S.W.Cheong;C.H.Lee
  3. Phys. Rev. B. v.60 Magnetic Properties of $Pr_{0.63}Sr_{0.37}MnO_3$ and $Nd_{0.7}Sr_{0.3}MnO_3$ Single Crystal J.G.Park;M.S.Kim;H.C.Ri;K.H.Kim;T.W.Noh;S.W.Cheong https://doi.org/10.1103/PhysRevB.60.14804
  4. J. Am. Ceram. Soc. v.83 Alternating-current Electrical Properties of CaMnO₃below Neel Temperature W.H.Jung;J.H.Sohn;J.H.Lee;J.H.Sohn;M.S.Park;S.H.Cho https://doi.org/10.1111/j.1151-2916.2000.tb01277.x
  5. J. Am. Ceram. Soc. v.83 Ferromagnetism and Magnetroresistance in $La_{0.67}Sr_{0.33}Fe_{0.07}Mn_{0.93}O_3$ Y.D.Li;J.H.Zhang;C.S.Xiong;H.W.Liao https://doi.org/10.1111/j.1151-2916.2000.tb01311.x
  6. Phys. Rev. B. v.53 Cooperative Jahn-teller Effect and Electron-Phonon Coupling in Stoichiometry and Electronic properties of $La_{1-x}A_xMnO_3$ A.I.Mills https://doi.org/10.1103/PhysRevB.53.8434
  7. Phys. Rev. B. v.55 Orbital Ordering and Superexchange in Manganites Oxides A.I.Mills https://doi.org/10.1103/PhysRevB.55.6405
  8. Phys. Rev. B. v.58 Unusual Thermoelectric Power of Single Crystal $La_{1.2}Sr_{1.8}Mn_2O_7$ J.S.Zhou;J.B.Goodenough;J.F.Mitchell
  9. Phys. Rev. B. v.57 Two-dimensional Intrinsic and Extrinsic Ferromagnetic Behavior of Layered $La_{1.2}Sr_{1.8}Mn_2O_7$ Single Crystal C.D.Potter;M.Swiat;S.D.Bader;D.N.Argyriou;J.F.Mitchell;D.J.Miller;D.G.Hinks;J.D.Jorgensen https://doi.org/10.1103/PhysRevB.57.72
  10. Appl. Phys. Lett. v.71 Preparation and Properties of Triple Perovskite $La_{3-3x}Ca_{1+3x}Mn_3O_{10}$ Ferromagnetic Thin Films H.Asano;J.Hayakawa;M.Matsui https://doi.org/10.1063/1.119664
  11. Phys. Rev. B. v.57 Magnetotransport in Perovskite Series$La_{n-nx}Ca_{1+nx}Mn_nO_{3n+1}$ Ferromagnets H.Asano;J.Hayakawa;M.Matsui https://doi.org/10.1103/PhysRevB.57.1052
  12. J. Kor. Ceram. Soc. v.36 no.8 Electrical Transport Properties of $La_{1.6}Ca_{1.4}Mn_2O_{7.07}$ System W.H.Jung
  13. Phys. Rev. B. v.55 Unconventional Magnetostriction in Layered $La_{1.2}Sr_{1.8}Mn_2O_7$ : Evidence for Spin-lattice Coupling above Tc D.A.Argyriou;J.F.Mitchell;C.D.Potter;S.D.Bader;R.Lieb;J.D.Jorgensen https://doi.org/10.1103/PhysRevB.55.R11965
  14. Phys. Rev. B. v.59 High-field Magnetization and Magnetoresistance of TEX>$La_{0.5}Sr_{0.5}MnO_4$ M.Tokunaga;N.Miura;Y.Moritomo;Y.Tokura https://doi.org/10.1103/PhysRevB.59.11151
  15. J. Kor. Ceram. Soc. v.39 no.3 Small Polaron Hopping Conduction of n=3 Ruddlesden-popper Compound $La_{2.1}Sr_{1.9}Mn_3O_10$ System W.H.Jung https://doi.org/10.4191/KCERS.2002.39.3.294
  16. J. Kor. Ceram. Soc. v.39 no.9 Small Polaron Hopping Conduction of n=3 Ruddlesden-popper Compound $La_{2.1}Sr_{1.9}Mn_3O_10$ System (II) W.H.Jung;J.H.Lee;J.H.Sohn https://doi.org/10.4191/KCERS.2002.39.9.878
  17. Phys. Rev. B. v.54 High-temperature Thermopower in $La_{2/3}Ca_{1/3}MnO_3$ Films : Evidence for Polaronic Transport M.Jaims;M.B.Salamon;M.Rubinstein;R.E.Treece;J.S.Horwitz;D.B.Chrisey https://doi.org/10.1103/PhysRevB.54.11914
  18. J. Appl. Phys. v.89 Polaron Hopping Conduction and Thermoelectric Power in $LaMnO_{3+δ}$ S.Pal;A.Banerjee;E.Rozenberg;B.K.Chaudhuri https://doi.org/10.1063/1.1362411
  19. Phys. Rev. B. v.58 Small-Polaron Transport in $La_{0.67}Ca_{0.33}MnO_3$ G.Jakob;W.Westerburg;F.Martin;H.Adrian https://doi.org/10.1103/PhysRevB.58.14966
  20. J. of Appl. Phys. v.90 no.4 Electrical Transport by Small Polaron in E.Quenneville;M.Meunier;A.Yelon;F.Morin https://doi.org/10.1063/1.1385356
  21. Phys. Rev. B. v.55 no.17 Thermoelectric Power of $La_{1-x}Ca_xMnO_{3+δ}$ : Inadequacy of the Nominal $Mn^{3+/4+}$ Valence Approach M.F.Hundley;J.J.Neumeier https://doi.org/10.1103/PhysRevB.55.11511
  22. J. KIEEME. v.14 no.16 Electrical Transport Properties of $La_{0.7}Sr_{0.3}FeO_3$ W.H.Jung
  23. J. Kor. Ceram. Soc. v.35 no.8 Electrical Transport Properties and Magnetic Properties in $(LaMn)_{1-λ}O_3$ W.H.Jung
  24. J. Phys. : Condens. Matter. v.10 Magnetic and Transport Properties of $Ce_{2/3}TiO_{2.981}$ W.H.Jung https://doi.org/10.1088/0953-8984/10/38/015
  25. Phys. Rev. B. v.56 Transport Mechanisms in Doped LaMnO₃: Evidence for Polaron Formation T.T.M.Palsta.;A.P.Ramirez;S.W.Cheong;B.R.Zegarski;P.Schiffer;J.Zaanen
  26. Phys. Rev. B. v.53 Thermopower of Single-crystal $Nd_{1-x}(Sr, Pb)_xMnO_{3-δ}$ V.H.Crespi;L.Lu;Y.X.Jia;K.Khazeni;A.Zettle;M.L.Cohen https://doi.org/10.1103/PhysRevB.53.14303
  27. Adv Phys. v.18 Polarons in Crystalline and Non-crystalline Materials N.F.Mott;I.G.Austin https://doi.org/10.1080/00018736900101267
  28. Adv. Phys. v.48 Mixed-valence Manganites J.M.D.Coey;M.Viret;S.Von Molnar https://doi.org/10.1080/000187399243455
  29. Phys. Rev. B v.61 Small-polaron Transport in the Zn-doped Colossal Magnetoresistance Materials $Fe_{1-x}Zn_xCr_2S_4$ S.Wang;K.Li;Z.Chen;Y.Zhang https://doi.org/10.1103/PhysRevB.61.575
  30. J. Appl. Phys. v.93 Thermoelectric Power of Na Doped $La_{0.7}Ca_{0.3-y}_ Na_{y}MnO_3$both in the Presence and Absence of Magnetic Field S.Bhattacharya;A.Banerjee;S.Pal;R.K.Mukherjee;B.K.Chaudhhuri https://doi.org/10.1063/1.1527220
  31. Phys. Rev. B. v.61 Temperature and Doping Dependence of the Thermoelectric Power in LaMnO₃ P.Mandal https://doi.org/10.1103/PhysRevB.61.14675
  32. Phys. Rev. B. v.58 Low-temperature Electrical Transport and Double Exchange in $La_{0.67}(Pb,Ca)_{0.33}MnO_3 S.M.Jaime;P.Lin;M.B.Salamon;P.D.Han
  33. Phys. Rev. Lett. v.18 Magnon-drag Tthermopower in Iron F.J.Blatt;D.J.Flood;W.Rowe;P.A.Schroeder https://doi.org/10.1103/PhysRevLett.18.395

Cited by

  1. Magnetic transitions and electrical transport in Bi-doped lanthanum strontium manganites vol.40, pp.5, 2014, https://doi.org/10.1063/1.4876222