• Title/Summary/Keyword: wide output range

Search Result 496, Processing Time 0.026 seconds

Wide Output Range AC/DC Converter for Rechargeable Battery of Electric Vehicle (광대역 출력을 가지는 전기자동차 배터리 충전용 AC/DC 컨버터)

  • Kim, Young-il;Kim, Hong-jung;Jun, Bum-su;Park, Gwi-chul;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.73-74
    • /
    • 2016
  • This paper proposes a wide output range AC/DC converter for a rechargeable battery of electric vehicle. In the proposed wide output range AC/DC converter for rechargeable battery of electric vehicle, the main transformer in the DC/DC stage is divided by two. Therefore, if the switch is connected to the middle tap, then half of the maximum voltage is applied. Otherwise, it can be applied the full range of the high voltage by connecting the switch to the whole tab. And also, it is designed to have a wide output voltage range by applying Vin/2 made by changing the full-bridge to half-bridge by using the bridge change switch of the input stage. As it can be supplied the wide range output voltage with a single module, it has the advantage of space utilization and cost reduction effect.

  • PDF

High Efficiency Design Procedure of a Second Stage Phase Shifted Full Bridge Converter for Battery Charge Applications Based on Wide Output Voltage and Load Ranges

  • Cetin, Sevilay
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.975-984
    • /
    • 2018
  • This work presents a high efficiency phase shifted full bridge (PSFB) DC-DC converter for use in the second stage of a battery charger for neighborhood electrical vehicle (EV) applications. In the design of the converter, Lithium-ion battery cells are preferred due to their high voltage and current rates, which provide a high power density. This requires wide range output voltage regulation for PSFB converter operation. In addition, the battery charger works with a light load when the battery charge voltage reaches its maximum value. The soft switching of the PSFB converter depends on the dead time optimization and load condition. As a result, the converter has to work with soft switching at a wide range output voltage and under light conditions to reach high efficiency. The operation principles of the PSFB converter for the continuous current mode (CCM) and the discontinuous current mode (DCM) are defined. The performance of the PSFB converter is analyzed in detail based on wide range output voltage and load conditions in terms of high efficiency. In order to validate performance analysis, a prototype is built with 42-54 V / 15 A output values at a 200 kHz switching frequency. The measured maximum efficiency values are obtained as 94.4% and 76.6% at full and at 2% load conditions, respectively.

A Highly Accurate BiCMOS Cascode Current Mirror for Wide Output Voltage Range (광범위 출력전압을 위한 고정밀 BiCMOS cascode 전류미러)

  • Yang, Byung-Do
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.3
    • /
    • pp.54-59
    • /
    • 2008
  • A highly accurate wide swing BiCMOS cascode current mirror is proposed. It uses the base-current compensated BJT current mirror. It increases both output impedance and output voltage range by using the npn-NMOS cascode instead of the NMOS-NMOS cascode. The npn transistor copies the input current and the NMOS transistor increases the output impedance for the accurate current mirroring. The proposed current mirror achieves highly constant current for wide output voltage range. Simulation results were verified with measurements performed on a fabricated chip using a 5/16V 0.5um BCD process. It has only $-2.5%{\sim}1.0%$ current error for $0.3V{\sim}16V$ output voltage range.

A Common Capacitor Connected LLC Resonant Converter with Auxiliary Switches Operating Over a Wide Output Voltage Control Range (넓은 출력전압 제어범위에서 동작하는 보조스위치 적용 공통커패시터 연결 LLC 공진컨버터)

  • Oh, Jae-Sung;Kim, Min-Ji;Lee, Ji-Cheol;Kim, Eun-Soo;Jeon, Yong-Seog;Kook, Yoon-Sang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.294-302
    • /
    • 2019
  • A capacitor common connected LLC resonant converter with auxiliary switches for a wide output voltage control range is presented in this paper. The proposed converter can be controlled in two ways to achieve a wide output voltage control range of Vo-3Vo. The first control method is performed through pulse width modulation of the auxiliary switches and primary switching devices. The second control method is conducted through frequency modulation of the primary switching devices configured to operate in full-bridge switching modes, when the auxiliary switches are turned off. The feasibility of the proposed converter is verified by the experimental results of a 5 kW prototype.

A Wide Output Range, High Power Efficiency Reconfigurable Charge Pump in 0.18 mm BCD process

  • Park, Hyung-Gu;Jang, Jeong-A;Cho, Sung Hun;Lee, Juri;Kim, Sang-Yun;Tiwari, Honey Durga;Pu, Young Gun;Hwang, Keum Cheol;Yang, Youngoo;Lee, Kang-Yoon;Seo, Munkyo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.777-788
    • /
    • 2014
  • This paper presents a wide output range, high power efficiency reconfigurable charge pump for driving touch panels with the high resistances. The charge pump is composed of 4-stages and its configuration automatically changes based on the required output voltage level. In order to keep the power efficiency over the wide output voltage range, internal blocks are automatically activated or deactivated by the clock driver in the reconfigurable charge pump minimizing the switching power loss due to the On and Off operations of MOSFET. In addition, the leakage current paths in each mode are blocked to compensate for the variation of power efficiency with respect to the wide output voltage range. This chip is fabricated using $0.18{\mu}m$ BCD process with high power MOSFET options, and the die area is $1870{\mu}m{\times}1430{\mu}m$. The power consumption of the charge pump itself is 79.13 mW when the output power is 415.45 mW at the high voltage mode, while it is 20.097 mW when the output power is 89.903 mW at the low voltage mode. The measured maximum power efficiency is 84.01 %, when the output voltage is from 7.43 V to 12.23 V.

Analysis of Hybrid Converter with Wide Voltage Range Operation

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1099-1107
    • /
    • 2019
  • A soft switching converter with wide voltage range operation is investigated in this paper. A series resonant converter is implemented to achieve a high circuit efficiency with soft switching characteristics on power switches and rectifier diodes. To improve the weakness of the narrow voltage range in LLC converters, an alternating current (ac) power switch is used on the primary side to select a half-bridge or full-bridge resonant circuit to implement 4:1 voltage range operation. On the secondary-side, another ac power switch is adopted to select a full-wave rectifier or voltage-doubler rectifier to achiever an additional 2:1 output voltage range. Therefore, the proposed resonant converter has the capacity for 8:1 (320V~40V) wide output voltage operation. A single-stage hybrid resonant converter is employed in the study circuit instead of a two-stage dc converter to achiever wide voltage range operation. As a result, the study converter has better converter efficiency. The theoretical analysis and circuit characteristics are verified by experiments with a prototype circuit.

LLC Resonant Converter with Auxiliary Switches Operating Over A Wide Output Voltage Range (넓은 입·출력전압 범위에서 제어 가능한 보조스위치 적용 LLC 공진컨버터)

  • Lee, Ji-Cheol;Kim, Min-Ji;Oh, Jae-Sung;Kim, Eun-Soo;Kook, Yoon-Sang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.256-264
    • /
    • 2018
  • This paper proposes a three-bridge LLC resonant converter with auxiliary switches for a wide output voltage control range. This converter can be controlled in two ways to achieve a wide controllable output voltage control range of $V_o$ to $3V_o$. The first control mechanism is achieved through the pulse width modulation (PM) of the auxiliary switches and primary switching devices, while the second control mechanism is achieved through the frequency modulation (FM) of the primary switching devices that are configured to operate in the full-bridge switching mode when the auxiliary switches are turned off. The feasibility of using the proposed converter is verified by the results of an experiment with a 2kW prototype.

High-linearity voltage-controlled current source circuits with wide range current output (넓은 범위의 전류 출력을 갖는 고선형 전압-제어 전류원 회로)

  • Cha, Hyeong-Woo
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.395-398
    • /
    • 2004
  • High-linearity voltage-controlled current sources (VCCSs) circuits for wide voltage-controlled oscillator and automatic gun control were proposed. The VCCS consists of emitter follower for voltage input, two common-base amplifier which their emitter connected for current output, and current mirror which connected the two amplifier for large output current. The VCCS used only five transistors and a resistor without an extra bias circuit. Simulation results show that the VCCS has current output range from 0mA to 300mA over the control voltage range from 1V to 4.8V at supply voltage 5V. The linearity error of output current has less than $1.4\%$ over the current range from 0A to 300mA.

  • PDF

A Voltage-fed Single-stage PFC Full-bridge Converter with Asymmetric Phase-shifted Control for Battery Chargers

  • Qian, Qinsong;Sun, Weifeng;Zhang, Taizhi;Lu, Shengli
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • A novel voltage-fed single-stage power factor correction (PFC) full-bridge converter based on asymmetric phase-shifted control for battery chargers is proposed in this paper. The attractive feature of the proposed converter is that it can operate in a wide output voltage range without an output low-frequency ripple, which is indispensable in battery charger applications. Meanwhile, the converter can maintain a high power factor and a controllable dc bus voltage over a wide output voltage range. In this paper, the realization of PFC and the operation principle of asymmetric phase-shifted control are given. A small-signal analysis of the proposed single-stage power factor correction (PFC) full-bridge converter is performed. Experimental results obtained from a 1kW experimental prototype are given to validate the feasibility of the proposed converter. The PF is higher than 0.97 over the entire output voltage range with the proposed control strategy.

An air-fuel ratio control for fuel-injected automotive engines by neural network (신경회로망을 이용한 연료 분사식 자동차 엔진의 공연비 제어)

  • 최종호;원영준;고상근;노승탁
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1006-1011
    • /
    • 1991
  • In this paper, a neural network estimator which estimates the output of the wide range oxygen sensor is proposed, The neural network estimator is constructed to give the output of the wide range oxygen sensor from rpm, fuel injection time, throttle position, and output voltage of the exhaust gas oxygen sensor. And, using this estimator, PI controller for air-fuel ratio control is designed. Experiment results show that the proposed method gives good results for SONATA engine under light load and constant rpms.

  • PDF