• 제목/요약/키워드: wide bandgap

검색결과 140건 처리시간 0.029초

Mixed-mode simulation을 이용한 4H-SiC DMOSFETs의 채널 길이에 따른 transient 특성 분석 (Mixed-mode simulation of transient characteristics of 4H-SiC DMOSFETs)

  • 강민석;최창용;방욱;김상철;김남균;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.131-131
    • /
    • 2009
  • Silicon Carbide (SiC) is a material with a wide bandgap (3.26eV), a high critical electric field (~2.3MV/cm), a and a high bulk electron mobility ($\sim900cm^2/Vs$). These electronic properties allow high breakdown voltage, high-speed switching capability, and high temperature operation compared to Si devices. Although various SiC DMOSFET structures have been reported so far for optimizing performances, the effect of channel dimension on the switching performance of SiC DMOSFETs has not been extensively examined. This paper studies different channel dimensons ($L_{CH}$ : $0.5{\mu}m$, $1\;{\mu}m$, $1.5\;{\mu}m$) and their effect on the the device transient characteristics. The key design parameters for SiC DMOSFETs have been optimized and a physics-based two-dimensional (2-D) mixed device and circuit simulator by Silvaco Inc. has been used to understand the relationship. with the switching characteristics. To investigate transient characteristic of the device, mixed-mode simulation has been performed, where the solution of the basic transport equations for the 2-D device structures is directly embedded into the solution procedure for the circuit equations. We observe an increase in the turn-on and turn-off time with increasing the channel length. The switching time in 4H-SiC DMOSFETs have been found to be seriously affected by the various intrinsic parasitic components, such as gate-source capacitance and channel resistance. The intrinsic parasitic components relate to the delay time required for the carrier transit from source to drain. Therefore, improvement of switching speed in 4H-SiC DMOSFETs is essential to reduce the gate-source capacitance and channel resistance.

  • PDF

다양한 온도에서 열처리한 씨앗 층 위에 열수화법을 이용한 ZnO 나노 막대의 성장

  • 배영숙;김영이;김동찬;공보현;안철현;최미경;우창호;한원석;조형균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.433-433
    • /
    • 2009
  • ZnO-based materials have been extensively studied for optoelectronic applications due to their superiors physical properties such as wide direct bandgap (~3.37 eV), large exciton binding energy (~60 meV), high transparency in the visible region, and low cost. Especially, one-dimensional (1D) ZnO nanostructures have attracted considerable attention owing to quantum confinement effect and high crystalline quality. Additionally, various nanostructures of ZnO such as nanorods, nanowires, nanoflower, and nanotubes have stimulated the interests because of their semiconducting. and piezoelectric properties. Among them, vertically aligned ZnO nanorods can bring the improved performance in various promising photoelectric fields including piezo-nanogenerators, UV lasers, dye sensitized solar cells, and photo-catalysis. In this work, we studied the effect of the annealing temperature of homo seed layers on the formation of ZnO nanorods grown by hydrothermal method. The effect of annealing temperature of seed layer on the length and orientation of the nanorods was investigated scanning electron microscopy investigation. Transmission electron microscopy and X-ray diffraction measurement were performed to understand the effect of annealing temperatures of seed layers on the formation of nanorods. Moreover, the optical properties of the seed layers and the nanorods were studied by room temperature photoluminescence.

  • PDF

원자힘현미경을 이용한 탄화규소 미세 패터닝의 Scanning Kelvin Probe Microscopy 분석 (Scanning Kelvin Probe Microscope analysis of Nano-scale Patterning formed by Atomic Force Microscopy in Silicon Carbide)

  • 조영득;방욱;김상철;김남균;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.32-32
    • /
    • 2009
  • Silicon carbide (SiC) is a wide-bandgap semiconductor that has materials properties necessary for the high-power, high-frequency, high-temperature, and radiation-hard condition applications, where silicon devices cannot perform. SiC is also the only compound semiconductor material. on which a silicon oxide layer can be thermally grown, and therefore may fabrication processes used in Si-based technology can be adapted to SiC. So far, atomic force microscopy (AFM) has been extensively used to study the surface charges, dielectric constants and electrical potential distribution as well as topography in silicon-based device structures, whereas it has rarely been applied to SiC-based structures. In this work, we investigated that the local oxide growth on SiC under various conditions and demonstrated that an increased (up to ~100 nN) tip loading force (LF) on highly-doped SiC can lead a direct oxide growth (up to few tens of nm) on 4H-SiC. In addition, the surface potential and topography distributions of nano-scale patterned structures on SiC were measured at a nanometer-scale resolution using a scanning kelvin probe force microscopy (SKPM) with a non-contact mode AFM. The measured results were calibrated using a Pt-coated tip. It is assumed that the atomically resolved surface potential difference does not originate from the intrinsic work function of the materials but reflects the local electron density on the surface. It was found that the work function of the nano-scale patterned on SiC was higher than that of original SiC surface. The results confirm the concept of the work function and the barrier heights of oxide structures/SiC structures.

  • PDF

Zinc Blende 구조를 가지는 ZnSe 결정의 밴드 특성에 관한 연구 (A Study on the Band Characteristics of ZnSe Thin Film with Zinc-blende Structure)

  • 박정민;김환동;윤도영
    • 전기화학회지
    • /
    • 제14권3호
    • /
    • pp.145-151
    • /
    • 2011
  • ZnSe는 가시광선 영역에서 넓은 밴드갭을 가지고 있는 II-VI족 화합물 반도체 소자로서 레이저 다이오드, 디스플레이 그리고 태양전지와 같은 다양한 응용분야에 적용되고 있다. 본 연구에서는 전기화학적 전착방법을 이용하여 ITO 전극상에 ZnSe 박막을 합성하여, XRD와 SEM으로 ZnSe 결정의 합성과 zinc blende 구조의 형태를 관측하였고, UV 분광기를 활용하여 밴드갭을 측정한 결과 2.76 eV이었다. 또한, 분자동역학에서 활용되는 밀도범함수 이론 (DFT, Density Functional Theory)을 도입하여 ZnSe 결정에 대한 밴드 구조의 해석을 수행하였다. Zinc blende구조를 갖는 ZnSe 결정에 대하여 LDA (Local Density Approximation), PBE (Perdew Burke Ernzerhof), 그리고 B3LYP (Becke, 3-parameter, Lee-Yang-Parr) 범함수를 이용하여 밴드구조와 상태밀도 (Density of State)를 모사하였다. 각각의 경우에 대해 에너지 밴드갭을 구한 결과, B3LYP 범함수로 해석한 경우에 실험치와 근사치인 2.65 eV의 밴드갭을 보여주었다.

Sol-gel 법으로 제작된 $ZrO_2$ 박막의 분광타원편광분석 연구

  • 김태중;윤재진;황순용;김영동;황수민;이승묵;주진호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.177-177
    • /
    • 2011
  • Complementary metal-insulator-metal capacitor에서 $SiO_2$는 절연체로 널리 사용되고 있었으나, 반도체 소자의 고직접화로 인한 선폭의 감소로 터널링 효과에 의해 누설전류가 증가하여, 대체 물질에 대한 연구가 활발히 진행되고 있다. 그 중 $ZrO_2$는 고유전율, wide bandgap, 열안정성의 특징을 가지고 있어 대체 물질로 주목 받고 있다. $ZrO_2$ 박막 제작에는 sputter, atomic layer deposition 등의 진공증착을 이용한 방법과 용액을 이용한 sol-gel 법이 있다. 화학용액을 이용한 sol-gel 법은 소자의 패턴을 프린트 할 수 있는 장점과 상대적으로 값싼 공정으로 인해 최근 주목 받고 있지만, 진공증착법에 비해서 연구가 전무한 실정이다. 본 연구에서는 sol-gel 법에 의해 프린트된 $ZrO_2$ 박막의 광특성을 분광타원편광분석법으로 연구하였다. Si 기판위에 0.1 M의 $ZrO_2$ sol을 입힌 뒤에 $300{\sim}700^{\circ}C$의 온도에서 열처리 하였다. 분광타원 편광분석기로 1.12~6.52 eV 에너지 영역에서 측정하였고, $ZrO_2$ 박막의 광특성 분석을 위해서 Tauc-Lorentz 모델을 이용하였다. 그 결과 고온에서의 열처리로 인해 효율이 높아서 소자로 이용할 수 있는 tetragonal 구조를 가진 $ZrO_2$ 박막이 형성됨을 분석할 수 있었다. 본 연구는 sol-gel법으로 제작된 $ZrO_2$ 박막의 고직접, 고속 소자응용성과 비파괴적인 광특성 분석법을 제시하고 있다.

  • PDF

NH4OH 수용액 하에서 Cu 호일의 산화를 통해 합성한 CuO 나노벽의 가스센싱 특성 (Gas sensing properties of CuO nanowalls synthesized via oxidation of Cu foil in aqueous NH4OH)

  • 슈엔하이엔뷔엔;팜티엔헝;풍딘호앗;이시홍;이상욱;이준형;김정주;허영우
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.141-141
    • /
    • 2018
  • Copper is one of the most abundant metals on earth. Its oxide (CuO) is an intrinsically p-type metal-oxide semiconductor with a bandgap ($E_g$) of 1.2-2.0 eV 1. Copper oxide nanomaterials are considered as promising materials for a wide range of applications e.g., lithium ion batteries, dye-sensitized solar cells, photocatalytic hydrogen production, photodetectors, and biogas sensors 2-7. Recently, high-density and uniform CuO nanostructures have been grown on Cu foils in alkaline solutions 3. In 2011, T. Soejima et al. proposed a facile process for the oxidation synthesis of CuO nanobelt arrays using $NH_3-H_2O_2$ aqueous solution 8. In 2017, G. Kaur et al. synthesized CuO nanostructures by treating Cu foils in $NH_4OH$ at room temperature for different treatment times 9. The surface treatment of Cu in alkaline aqueous solutions is a potential method for the mass fabrication of CuO nanostructures with high uniformity and density. It is interesting to compare the gas sensing properties among CuO nanomaterials synthesized by this approach and by others. Nevertheless, none of above studies investigated the gas sensing properties of as-synthesized CuO nanomaterials. In this study, CuO nanowalls versus nanoparticles were synthesized via the oxidation process of Cu foil in NH4OH solution at $50-70^{\circ}C$. The gas sensing properties of the as-prepared CuO nanoplates were examined with $C_2H_5OH$, $CH_3COCH_3$, and $NH_3$ at $200-360^{\circ}C$.

  • PDF

2단계 수열합성을 이용한 ZnO 계층 나노구조 기반 UV 센서 제작 (Fabrication of UV Sensor Based on ZnO Hierarchical Nanostructure Using Two-step Hydrothermal Growth)

  • 우현수;김건휘;김수현;안태창;임근배
    • 센서학회지
    • /
    • 제29권3호
    • /
    • pp.187-193
    • /
    • 2020
  • Ultraviolet (UV) sensors are widely applied in industrial and military fields such as environmental monitoring, medicine and astronomy. Zinc oxide (ZnO) is considered as one of the promising materials for UV sensors because of its ease of fabrication, wide bandgap (3.37 eV) and high chemical stability. In this study, we used the hydrothermal growth of ZnO to form two types of ZnO nanostructures (Nanoflower and nanorod) and applied them to a UV sensor. To improve the performance of the UV sensor, the hydrothermal growth was used in a two-step process for fabricating ZnO hierarchical nanostructures. The fabricated ZnO hierarchical nanostructure improved the performance of the UV sensor by increasing the ratio of volume to surface area and the number of nanojunctions compared to one-step hydrothermal grown ZnO nanostructure. The UV sensor based on the ZnO hierarchical nanostructure had a maximum photocurrent of 44 ㎂, which is approximately 3 times higher than that of a single nanostructure. The UV sensor fabrication method presented in this study is simple and based on the hydrothermal solution process, which is advantageous for large-area production and mass production; this provides scope for extensive research in the field of UV sensors.

Improvement in the bias stability of zinc oxide thin-film transistors using an $O_2$ plasma-treated silicon nitride insulator

  • 김웅선;문연건;권태석;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.180-180
    • /
    • 2010
  • Thin film transistors (TFTs) based on oxide semiconductors have emerged as a promising technology, particularly for active-matrix TFT-based backplanes. Currently, an amorphous oxide semiconductor, such as InGaZnO, has been adopted as the channel layer due to its higher electron mobility. However, accurate and repeatable control of this complex material in mass production is not easy. Therefore, simpler polycrystalline materials, such as ZnO and $SnO_2$, remain possible candidates as the channel layer. Inparticular, ZnO-based TFTs have attracted considerable attention, because of their superior properties that include wide bandgap (3.37eV), transparency, and high field effect mobility when compared with conventional amorphous silicon and polycrystalline silicon TFTs. There are some technical challenges to overcome to achieve manufacturability of ZnO-based TFTs. One of the problems, the stability of ZnO-based TFTs, is as yet unsolved since ZnO-based TFTs usually contain defects in the ZnO channel layer and deep level defects in the channel/dielectric interface that cause problems in device operation. The quality of the interface between the channel and dielectric plays a crucial role in transistor performance, and several insulators have been reported that reduce the number of defects in the channel and the interfacial charge trap defects. Additionally, ZnO TFTs using a high quality interface fabricated by a two step atomic layer deposition (ALD) process showed improvement in device performance In this study, we report the fabrication of high performance ZnO TFTs with a $Si_3N_4$ gate insulator treated using plasma. The interface treatment using electron cyclotron resonance (ECR) $O_2$ plasma improves the interface quality by lowering the interface trap density. This process can be easily adapted for industrial applications because the device structure and fabrication process in this paper are compatible with those of a-Si TFTs.

  • PDF

대기압 마이크로웨이브 플라즈마를 이용한 다양한 크기의 ZnO tetrapod 합성 및 광촉매 특성 평가 (Synthesis of size-controlled ZnO tetrapods sizes using atmospheric microwave plasma system and evaluation of its photocatalytic property)

  • 허성규;정구환
    • 한국표면공학회지
    • /
    • 제54권6호
    • /
    • pp.340-347
    • /
    • 2021
  • Among various metal oxide semiconductors, ZnO has an excellent electrical, optical properties with a wide bandgap of 3.3 eV. It can be applied as a photocatalytic material due to its high absorption rate along with physical and chemical stability to UV light. In addition, it is important to control the morphology of ZnO because the size and shape of the ZnO make difference in physical properties. In this paper, we demonstrate synthesis of size-controlled ZnO tetrapods using an atmospheric pressure plasma system. A micro-sized Zn spherical powder was continuously introduced in the plume of the atmospheric plasma jet ignited with mixture of oxygen and nitrogen. The effect of plasma power and collection sites on ZnO nanostructure was investigated. After the plasma discharge for 10 min, the produced materials deposited inside the 60-cm-long quartz tube were obtained with respect to the distance from the plume. According to the SEM analysis, all the synthesized nanoparticles were found to be ZnO tetrapods ranging from 100 to 600-nm-diameter depending on both applied power and collection site. The photocatalytic efficiency was evaluated by color change of methylene blue solution using UV-Vis spectroscopy. The photocatalytic activity increased with the increase of (101) and (100) plane in ZnO tetrapods, which is caused by enhanced chemical effects of plasma process.

ZnO 스퍼터링에서 기판전압의 변화에 의한 성장 조절 (Control of ZnO Sputtering Growth by Changing Substrate Bias Voltage)

  • ;최재원;전원진;조중열
    • 반도체디스플레이기술학회지
    • /
    • 제16권2호
    • /
    • pp.94-97
    • /
    • 2017
  • Amorphous Si has been used for data processing circuits in flat panel displays. However, low mobility of the amorphous Si is a limiting factor for the data transmission speed. Metal oxides such as ZnO have been studied to replace the amorphous Si. ZnO is a wide bandgap (3.3 eV) semiconductor with high mobility and good optical transparency. When ZnO is grown by sputtering with $O_2$ as an oxidizer, there can be many ion species arising from $O_2$ decomposition. $O^+$, $O_2{^+}$, and $O^-$ ions are expected to be the most abundant species, and it is not clear which one contributes to the ZnO growth. We applied alternating substrate voltage (0 V and -70 V) during sputtering growth. We studied changes in transistor characteristics induced by the voltage switching. We also compared ZnO grown by dc and rf sputtering. ZnO film was grown at $450^{\circ}C$ substrate temperature. ZnO thin-film transistor grown with these methods showed $7.5cm^2/Vsec$ mobility, $10^6$ on-off ratio, and -2 V threshold voltage.

  • PDF