• Title/Summary/Keyword: whole-genome sequence

Search Result 210, Processing Time 0.025 seconds

Complete genome sequence of functional probiotic candidate Lactobacillus amylovorus CACC736

  • Soyeon Park;Jung-Ae Kim;Hyun-Jun Jang;Dae-Hyuk Kim;Yangseon Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.473-477
    • /
    • 2023
  • Lactobacillus amylovorus CACC736 was originated from swine feces in Korea. The complete genome sequences of the strain contained one circular chromosome (2,057,809 base pair [bp]) with 38.2% guanine-cytosine (GC) content and two circular plasmids, namely, pCACC736-1 and pCACC736-2. The predicted protein-coding genes, which are encoding the clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins, biosynthesis of bacteriocin (helveticin J), and the related proteins of the bile, acid tolerance. Notably, the genes related to vitamin B-group biosynthesis (riboflavin and cobalamin) were also found in L. amylovorus CACC736. Collectively, the complete genome sequence of the L. amylovorus CACC736 will aid in the development of functional probiotics in the animal industry.

Whole-Genome Sequence of Priestia aryabhattai Strain S2 Isolated from the Rhizosphere of Soybean (Glycine max)

  • Amani Sliti;Min-Ji Kim;GyuDae Lee;Yeong-Jun Park;Jae-Ho Shin
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.3
    • /
    • pp.296-299
    • /
    • 2023
  • We present the complete genome sequence of Priestia aryabhattai strain S2 isolated from the soybean rhizosphere. The genome consists of a single circular chromosome of 5,070,860 bp with a G+C content of 38.3% and 2 plasmids, P1(148,124 bp, GC content 33.3%) and P2 (76,418 bp, GC content 36.5%).

Quantitative Trait Locus Mapping and Candidate Gene Analysis for Plant Architecture Traits Using Whole Genome Re-Sequencing in Rice

  • Lim, Jung-Hyun;Yang, Hyun-Jung;Jung, Ki-Hong;Yoo, Soo-Cheul;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.149-160
    • /
    • 2014
  • Plant breeders have focused on improving plant architecture as an effective means to increase crop yield. Here, we identify the main-effect quantitative trait loci (QTLs) for plant shape-related traits in rice (Oryza sativa) and find candidate genes by applying whole genome re-sequencing of two parental cultivars using next-generation sequencing. To identify QTLs influencing plant shape, we analyzed six traits: plant height, tiller number, panicle diameter, panicle length, flag leaf length, and flag leaf width. We performed QTL analysis with 178 $F_7$ recombinant inbred lines (RILs) from a cross of japonica rice line 'SNU-SG1' and indica rice line 'Milyang23'. Using 131 molecular markers, including 28 insertion/deletion markers, we identified 11 main- and 16 minor-effect QTLs for the six traits with a threshold LOD value > 2.8. Our sequence analysis identified fifty-four candidate genes for the main-effect QTLs. By further comparison of coding sequences and meta-expression profiles between japonica and indica rice varieties, we finally chose 15 strong candidate genes for the 11 main-effect QTLs. Our study shows that the whole-genome sequence data substantially enhanced the efficiency of polymorphic marker development for QTL fine-mapping and the identification of possible candidate genes. This yields useful genetic resources for breeding high-yielding rice cultivars with improved plant architecture.

Application of next generation sequencing (NGS) system for whole-genome sequencing of porcine reproductive and respiratory syndrome virus (PRRSV) (돼지생식기호흡기증후군바이러스(PRRSV)의 전장 유전체 염기서열(whole-genome sequencing) 분석을 위한 차세대 염기서열 분석법의 활용)

  • Moon, Sung-Hyun;Khatun, Amina;Kim, Won-Il;Hossain, Md Mukter;Oh, Yeonsu;Cho, Ho-Seong
    • Korean Journal of Veterinary Service
    • /
    • v.39 no.1
    • /
    • pp.41-49
    • /
    • 2016
  • In the present study, fast and robust methods for the next generation sequencing (NGS) were developed for analysis of PRRSV full genome sequences, which is a positive sensed RNA virus with a high degree of genetic variability among isolates. Two strains of PRRSVs (VR2332 and VR2332-R) which have been maintained in our laboratory were used to validate our methods and to compare with the sequence registered in GenBank (GenBank accession no. EF536003). The results suggested that both of strains had 100% coverage with the reference; the VR2332 had the coverage depth from minimum 3 to maximum 23,012, for the VR2332-R from minimum 3 to maximum 41,348, and 22,712 as an average depth. Genomic data produced from the massive sequencing capacities of the NGS have enabled the study of PRRSV at an unprecedented rate and details. Unlike conventional sequence methods which require the knowledge of conserved regions, the NGS allows de novo assembly of the full viral genomes. Therefore, our results suggested that these methods using the NGS massively facilitate the generation of more full genome PRRSV sequences locally as well as nationally in regard of saving time and cost.

Complete genome sequence of Lactobacillus koreensis 26-25, a ginsenoside converting bacterium, isolated from Korean kimchi (김치에서 분리한 진세노사이드 전환 능력이 있는 Lactobacillus koreensis 26-25의 유전체 서열 분석)

  • Kim, Ju-Hyeon;Liu, Qing-Mei;Srinivasan, Sathiyaraj;Kim, Myung Kyum;Kim, Sang Yong;Wee, Ji-Hyang;Im, Wan-Taek
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.477-479
    • /
    • 2018
  • A Gram-positive, rod-shaped, ivory colored, and motile, Lactobacillus koreensis 26-25 was isolated from Korean kimchi. Strain 26-25 showed the ability of conversion from major ginsenosides into minor ginsenosides for which whole genome was sequenced. The whole genome sequence of Lactobacillus koreensis 26-25 consisted of one circular chromosome comprised of 3,006,812 bp, with a DNA G + C content of 49.23%. The whole genome analysis of strain 26-25 showed many glycosides hydrolase genes, which may contribute to identify the genes responsible for transformation of major ginsenosides into minor ginsenosides for its high pharmacological effects.

Complete Genome Analysis of Spodoptera exigua Nucleopolyhedrovirus Isolated in Korea (한국에서 분리된 파밤나방 핵다각체병 바이러스의 전체 유전체 분석)

  • Jae Bang, Choi;Hyun-Soo, Kim;Soo-Dong, Woo
    • Korean journal of applied entomology
    • /
    • v.61 no.3
    • /
    • pp.449-460
    • /
    • 2022
  • The morphology and whole genome sequence of Spodoptera exigua nucleopolyhedrovirus K1 (SeNPV-K1) isolated in Korea were analyzed for the use as an eco-friendly control source against S. exigua. The polyhedra of SeNPV-K1 was amorphous with a size of 0.6-1.8 ㎛, and there was no external difference with the previously reported SeNPV. As a result of analyzing the nucleotide sequence of the whole genome, it was composed of 135,756 bp, which is 145 bp more than that of the previously reported SeNPV. The G+CG+C content was 44% and there were 6 homologous repeated sequences, so there was no significant difference from the previous report. As a result of ORF analysis, SeNPV-K1 had 137, two fewer than those previously reported, and 4 ORFs present only in SeNPV-K1 were confirmed. These 4 ORFs are non-essential genes and were not considered to have a significant influence on the characteristics of the SeNPV. The genome vista analysis showed that the overall sequence similarity between SeNPV-K1 and the previously reported SeNPV was very high. The whole genome of SeNPV-K1 analyzed for the first time in Korea was found to be similar to the previously reported SeNPV, but it was confirmed that it was a novel resource in Korea with different isolate.

Current Status of Genome Research in Phylum Mollusks (연체동물 유전체 연구현황)

  • Bang, In-Seok;Han, Yeon-Soo;Lee, Jun-Sang;Lee, Yong-Seok
    • The Korean Journal of Malacology
    • /
    • v.26 no.4
    • /
    • pp.317-326
    • /
    • 2010
  • The availability of fast and inexpensive sequencing technology has enabled researchers around the world to conduct many genome sequencing and expressed sequence tag (EST) projects of diverse organisms. In recent years, whole genome projects have been undertaken to sequence ten species from the phylum Mollusca. These include Aplysia californica, Lottia gigantea, Crassostrea virginica, Spisula solidissima, Mytilus californianus, Biomphalaria glabrata, Crepidula fornicata, Elysia chlorotica, Lottia scutum and Radix balthica. Additionally, complete mitochondrial genomes of 91 mollusks have been reported. In Korea, EST projects have been conducted in nine mollusk species that include Nesiohelix samarangae, Pisidium (Neopisidium) coreanum, Physa acuta, Incilaria fruhstorferi, Meretrix lusoria, Ruditapes philippinarum, Nordotis gigantea, Crassostrea gigas and Laternula elliptica. Finally, the mitochondrial genome projects from the Pacific Oyster (Crassostrea gigas) and the rock shell (Thais clavigera) have been conducted and reported. However, no systemic mollusk genome project has so far been conducted in Korea. In this report, the current status and research trends in mollusk genome study in Korea will be discussed.

The Design and Implementation of Web-Based Integrated Genome Analysis Tools (웹 기반 통합 유전체 분석 시스템의 설계 및 구현)

  • 최범순;이경희;권해룡;조완섭;이충세;김영창
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.3
    • /
    • pp.408-417
    • /
    • 2004
  • Genome analysis process requires several steps of various software analysis tools. We propose WGAT(Web-based Genome Analysis Tool), which combines several tools for gene analysis and provides a graphic user interface for users. Software tools related to gene analysis are based on Linux or Unix oriented program, which is difficult to install and use for biologists. Furthermore, files generated from gene analysis frequently require manual transformation for next step input file. Web-based tools which are recently developed process orily one sequence at a time. So it needs many repetitive processes to analyze large size data file. WGAT is developed to support Web-based genome analysis for easy use as well as fast service for users. Whole genome data analysis can be done by running WGAT on Linux server and giving sequence data files with various options. Therefore many steps of the analysis can be done automatically by the system. Simulation shows that WGAT method gives 20 times faster analysis when sequence segment is one thousand.

  • PDF

Draft Genome Sequence of the Reference Strain of the Korean Medicinal Mushroom Wolfiporia cocos KMCC03342

  • Bogun Kim;Byoungnam Min;Jae-Gu Han;Hongjae Park;Seungwoo Baek;Subin Jeong;In-Geol Choi
    • Mycobiology
    • /
    • v.50 no.4
    • /
    • pp.254-257
    • /
    • 2022
  • Wolfiporia cocos is a wood-decay brown rot fungus belonging to the family Polyporaceae. While the fungus grows, the sclerotium body of the strain, dubbed Bokryeong in Korean, is formed around the roots of conifer trees. The dried sclerotium has been widely used as a key component of many medicinal recipes in East Asia. Wolfiporia cocos strain KMCC03342 is the reference strain registered and maintained by the Korea Seed and Variety Service for commercial uses. Here, we present the first draft genome sequence of W. cocos KMCC03342 using a hybrid assembly technique combining both short- and long-read sequences. The genome has a total length of 55.5 Mb comprised of 343 contigs with N50 of 332 kb and 95.8% BUSCO completeness. The GC ratio was 52.2%. We predicted 14,296 protein-coding gene models based on ab initio gene prediction and evidence-based annotation procedure using RNAseq data. The annotated genome was predicted to have 19 terpene biosynthesis gene clusters, which was the same number as the previously sequenced W. cocos strain MD-104 genome but higher than Chinese W. cocos strains. The genome sequence and the predicted gene clusters allow us to study biosynthetic pathways for the active ingredients of W. cocos.

A Comparison between Low- and High-Passage Strains of Human CytomegalovirusS

  • Wang, Wen-Dan;Lee, Gyu-Cheol;Kim, Yu Young;Lee, Chan Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1800-1807
    • /
    • 2016
  • To understand how human cytomegalovirus (HCMV) might change and evolve after reactivation, it is very important to understand how the nucleotide sequence of cultured HCMV changes after in vitro passaging in cell culture, and how these changes affect the genome of HCMV and the consequent variation in amino acid sequence. Strain JHC of HCMV was propagated in vitro for more than 40 passages and its biological and genetic changes were monitored. For each passage, real-time PCR was performed in order to determine the genome copy number, and a plaque assay was employed to get virus infection titers. The infectious virus titers gradually increased with passaging in cell culture, whereas the number of virus genome copies remained relatively unchanged. A linear correlation was observed between the passage number and the log10 infectious virus titer per virus genome copy number. To understand the genetic basis underlying the increase in HCMV infectivity with increasing passage, the whole-genome DNA sequence of the high-passage strain was determined and compared with the genome sequence of the low-passage strain. Out of 100 mutations found in the high-passage strain, only two were located in an open reading frame. A G-T substitution in the RL13 gene resulted in a nonsense mutation and caused an early stop. A G-A substitution in the UL122 gene generated an S-F nonsynonymous mutation. The mutations in the RL13 and UL122 genes might be related to the increase in virus infectivity, although the role of the mutations found in noncoding regions could not be excluded.