• Title/Summary/Keyword: whole metagenome

Search Result 8, Processing Time 0.022 seconds

Analysis of antibiotic resistance genes in pig feces during the weaning transition using whole metagenome shotgun sequencing

  • Gi Beom Keum;Eun Sol Kim;Jinho Cho;Minho Song;Kwang Kyo Oh;Jae Hyoung Cho;Sheena Kim;Hyeri Kim;Jinok Kwak;Hyunok Doo;Sriniwas Pandey;Hyeun Bum Kim;Ju-Hoon Lee
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.175-182
    • /
    • 2023
  • Antibiotics have been used in livestock production for not only treatment but also for increasing the effectiveness of animal feed, aiding animal growth, and preventing infectious diseases at the time when immunity is lowered due to stress. South Korea and the EU are among the countries that have prohibited the use of antibiotics for growth promotion in order to prevent indiscriminate use of antibiotics, as previous studies have shown that it may lead to increase in cases of antibiotic-resistant bacteria. Therefore, this study evaluated the number of antibiotic resistance genes in piglets staging from pre-weaning to weaning. Fecal samples were collected from 8 piglets just prior to weaning (21 d of age) and again one week after weaning (28 d of age). Total DNA was extracted from the 200 mg of feces collected from the 8 piglets. Whole metagenome shotgun sequencing was carried out using the Illumina Hi-Seq 2000 platform and raw sequence data were imported to Metagenomics Rapid Annotation using Subsystem Technology (MG-RAST) pipeline for microbial functional analysis. The results of this study did not show an increase in antibiotic-resistant bacteria although confirmed an increase in antibiotic-resistant genes as the consequence of changes in diet and environment during the experiment.

Metagenomic SMRT Sequencing-Based Exploration of Novel Lignocellulose-Degrading Capability in Wood Detritus from Torreya nucifera in Bija Forest on Jeju Island

  • Oh, Han Na;Lee, Tae Kwon;Park, Jae Wan;No, Jee Hyun;Kim, Dockyu;Sul, Woo Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1670-1680
    • /
    • 2017
  • Lignocellulose, composed mostly of cellulose, hemicellulose, and lignin generated through secondary growth of woody plant, is considered as promising resources for biofuel. In order to use lignocellulose as a biofuel, biodegradation besides high-cost chemical treatments were applied, but knowledge on the decomposition of lignocellulose occurring in a natural environment is insufficient. We analyzed the 16S rRNA gene and metagenome to understand how the lignocellulose is decomposed naturally in decayed Torreya nucifera (L) of Bija forest (Bijarim) in Gotjawal, an ecologically distinct environment. A total of 464,360 reads were obtained from 16S rRNA gene sequencing, representing diverse phyla; Proteobacteria (51%), Bacteroidetes (11%) and Actinobacteria (10%). The metagenome analysis using single molecules real-time sequencing revealed that the assembled contigs determined originated from Proteobacteria (58%) and Actinobacteria (10.3%). Carbohydrate Active enZYmes (CAZy)- and Protein families (Pfam)-based analysis showed that Proteobacteria was involved in degrading whole lignocellulose, and Actinobacteria played a role only in a part of hemicellulose degradation. Combining these results, it suggested that Proteobacteria and Actinobacteria had selective biodegradation potential for different lignocellulose substrates. Thus, it is considered that understanding of the systemic microbial degradation pathways may be a useful strategy for recycle of lignocellulosic biomass, and the microbial enzymes in Bija forest can be useful natural resources in industrial processes.

Utilization of whole genome treasure for the library construction of industrial enzymes

  • Kim, Won-Ho;Cho, Kyoung-Won;Jung, In-Su;Choi, Keum-Hwa;Hur, Byung-Ki;Kim, Geun-Joong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.815-820
    • /
    • 2003
  • A huge database resulted from whole genome sequencing has provided a possibility of new information that is likely to extent the scope and thus changes the way of approach for the functional assigning of putative open reading frames annotated by whole genome sequence analyses. These are mainly realized by ease, one-step identification of putative genes using genomics or proteomics tools. A major challenge remained in biotechnology may translate these informations into better ways to screen or select a gene as a representative sequence. Further attempts to mine the related whole genes or partial DNA fragment from whole genome treasure, and then the incorporation of these sequences into a representative template, will result in the use of putative genes that can be translated into functional proteins or allowed the generation of new lineages as a valuable pool. Such screens enable rapid biochemical analysis and easy isolation of the target activity, thereby accelerating the screening of novel enzymes from the expanded library with related sequences. Information-based PCR amplification of whole genes and reconstitution of functional DNA fragments will provide a platform for expanding the functional spaces of potential enzymes, especially when used mixed- or metagenome as gene resources.

  • PDF

Exploring the Microbial Community and Functional Characteristics of the Livestock Feces Using the Whole Metagenome Shotgun Sequencing

  • Hyeri Kim;Eun Sol Kim;Jin Ho Cho;Minho Song;Jae Hyoung Cho;Sheena Kim;Gi Beom Keum;Jinok Kwak;Hyunok Doo;Sriniwas Pandey;Seung-Hwan Park;Ju Huck Lee;Hyunjung Jung;Tai Young Hur;Jae-Kyung Kim;Kwang Kyo Oh;Hyeun Bum Kim;Ju-Hoon Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.51-60
    • /
    • 2023
  • The foodborne illness is the important public health concerns, and the livestock feces are known to be one of the major reservoirs of foodborne pathogens. Also, it was reported that 45.5% of foodborne illness outbreaks have been associated with the animal products contaminated with the livestock feces. In addition, it has been known that the persistence of a pathogens depends on many potential virulent factors including the various virulent genes. Therefore, the first step to understanding the public health risk of livestock feces is to identify and describe microbial communities and potential virulent genes that contribute to bacterial pathogenicity. We used the whole metagenome shotgun sequencing to evaluate the prevalence of foodborne pathogens and to characterize the virulence associated genes in pig and chicken feces. Our data showed that the relative abundance of potential foodborne pathogens, such as Bacillus cereus was higher in chickens than pigs at the species level while the relative abundance of foodborne pathogens including Campylobacter coli was only detected in pigs. Also, the microbial functional characteristics of livestock feces revealed that the gene families related to "Biofilm formation and quorum sensing" were highly enriched in pigs than chicken. Moreover, the variety of gene families associated with "Resistance to antibiotics and toxic compounds" were detected in both animals. These results will help us to prepare the scientific action plans to improve awareness and understanding of the public health risks of livestock feces.

Metagenome-Assembled Genomes of Komagataeibacter from Kombucha Exposed to Mars-Like Conditions Reveal the Secrets in Tolerating Extraterrestrial Stresses

  • Lee, Imchang;Podolich, Olga;Brenig, Bertram;Tiwari, Sandeep;Azevedo, Vasco;de Carvalho, Daniel Santana;Uetanabaro, Ana Paula Trovatti;Goes-Neto, Aristoteles;Alzahrani, Khalid J.;Reva, Oleg;Kozyrovska, Natalia;de Vera, Jean-Pierre;Barh, Debmalya;Kim, Bong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.967-975
    • /
    • 2022
  • Kombucha mutualistic community (KMC) is composed by acetic acid bacteria and yeasts, producing fermented tea with health benefits. As part of the BIOlogy and Mars EXperiment (BIOMEX) project, the effect of Mars-like conditions on the KMC was analyzed. Here, we analyzed metagenome-assembled genomes (MAGs) of the Komagataeibacter, which is a predominant genus in KMC, to understand their roles in the KMC after exposure to Mars-like conditions (outside the International Space Station) based on functional genetic elements. We constructed three MAGs: K. hansenii, K. rhaeticus, and K. oboediens. Our results showed that (i) K. oboediens MAG functionally more complex than K. hansenii, (ii) K. hansenii is a keystone in KMCs with specific functional features to tolerate extreme stress, and (iii) genes related to the PPDK, betaine biosynthesis, polyamines biosynthesis, sulfate-sulfur assimilation pathway as well as type II toxin-antitoxin (TA) system, quorum sensing (QS) system, and cellulose production could play important roles in the resilience of KMC after exposure to Mars-like stress. Our findings show the potential mechanisms through which Komagataeibacter tolerates the extraterrestrial stress and will help to understand minimal microbial composition of KMC for space travelers.

Metagenomic analysis of viral genes integrated in whole genome sequencing data of Thai patients with Brugada syndrome

  • Suwalak Chitcharoen;Chureerat Phokaew;John Mauleekoonphairoj;Apichai Khongphatthanayothin;Boosamas Sutjaporn;Pharawee Wandee;Yong Poovorawan;Koonlawee Nademanee;Sunchai Payungporn
    • Genomics & Informatics
    • /
    • v.20 no.4
    • /
    • pp.44.1-44.13
    • /
    • 2022
  • Brugada syndrome (BS) is an autosomal dominant inheritance cardiac arrhythmia disorder associated with sudden death in young adults. Thailand has the highest prevalence of BS worldwide, and over 60% of patients with BS still have unclear disease etiology. Here, we performed a new viral metagenome analysis pipeline called VIRIN and validated it with whole genome sequencing (WGS) data of HeLa cell lines and hepatocellular carcinoma. Then the VIRIN pipeline was applied to identify viral integration positions from unmapped WGS data of Thai males, including 100 BS patients (case) and 100 controls. Even though the sample preparation had no viral enrichment step, we can identify several virus genes from our analysis pipeline. The predominance of human endogenous retrovirus K (HERV-K) viruses was found in both cases and controls by blastn and blastx analysis. This study is the first report on the full-length HERV-K assembled genomes in the Thai population. Furthermore, the HERV-K integration breakpoint positions were validated and compared between the case and control datasets. Interestingly, Brugada cases contained HERV-K integration breakpoints at promoters five times more often than controls. Overall, the highlight of this study is the BS-specific HERV-K breakpoint positions that were found at the gene coding region "NBPF11" (n = 9), "NBPF12" (n = 8) and long non-coding RNA (lncRNA) "PCAT14" (n = 4) region. The genes and the lncRNA have been reported to be associated with congenital heart and arterial diseases. These findings provide another aspect of the BS etiology associated with viral genome integrations within the human genome.

Microbial Community of the Arctic Soil from the Glacier Foreland of Midtre Lovénbreen in Svalbard by Metagenome Analysis (북극 스발바르 군도 중앙로벤 빙하 해안 지역의 토양 시료 내 메타지놈 기반 미생물 군집분석)

  • Seok, Yoon Ji;Song, Eun-Ji;Cha, In-Tae;Lee, Hyunjin;Roh, Seong Woon;Jung, Ji Young;Lee, Yoo Kyung;Nam, Young-Do;Seo, Myung-Ji
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.171-179
    • /
    • 2016
  • Recent succession of soil microorganisms and vegetation has occurred in the glacier foreland, because of glacier thawing. In this study, whole microbial communities, including bacteria, archaea, and eukaryotes, from the glacier foreland of Midtre Lovénbreen in Svalbard were analyzed by metagenome sequencing, using the Ion Torrent Personal Genome Machine (PGM) platform. Soil samples were collected from two research sites (ML4 and ML7), with different exposure times, from the ice. A total of 2,798,108 and 1,691,859 reads were utilized for microbial community analysis based on the metagenomic sequences of ML4 and ML7, respectively. The relative abundance of microbial communities at the domain level showed a high proportion of bacteria (about 86−87%), whereas archaeal and eukaryotic communities were poorly represented by less than 1%. The remaining 12% of the sequences were found to be unclassified. Predominant bacterial groups included Proteobacteria (40.3% from ML4 and 43.3% from ML7) and Actinobacteria (22.9% and 24.9%). Major groups of Archaea included Euryarchaeota (84.4% and 81.1%), followed by Crenarchaeota (10.6% and 13.1%). In the case of eukaryotes, both ML4 and ML7 samples showed Ascomycota (33.8% and 45.0%) as the major group. These findings suggest that metagenome analysis using the Ion Torrent PGM platform could be suitably applied to analyze whole microbial community structures, providing a basis for assessing the relative importance of predominant groups of bacterial, archaeal, and eukaryotic microbial communities in the Arctic glacier foreland of Midtre Lovénbreen, with high resolution.

Analysis of 16S rRNA gene sequencing data for the taxonomic characterization of the vaginal and the fecal microbial communities in Hanwoo

  • Choi, Soyoung;Cha, Jihye;Song, Minji;Son, JuHwan;Park, Mi-Rim;Lim, Yeong-jo;Kim, Tae-Hun;Lee, Kyung-Tai;Park, Woncheoul
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1808-1816
    • /
    • 2022
  • Objective: The study of Hanwoo (Korean native cattle) has mainly been focused on meat quality and productivity. Recently the field of microbiome research has increased dramatically. However, the information on the microbiome in Hanwoo is still insufficient, especially relationship between vagina and feces. Therefore, the purpose of this study is to examine the microbial community characteristics by analyzing the 16S rRNA sequencing data of Hanwoo vagina and feces, as well as to confirm the difference and correlation between vaginal and fecal microorganisms. As a result, the goal is to investigate if fecal microbiome can be used to predict vaginal microbiome. Methods: A total of 31 clinically healthy Hanwoo that delivered healthy calves more than once in Cheongju, South Korea were enrolled in this study. During the breeding season, we collected vaginal and fecal samples and sequenced the microbial 16S rRNA genes V3-V4 hypervariable regions from microbial DNA of samples. Results: The results revealed that the phylum-level microorganisms with the largest relative distribution were Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria in the vagina, and Firmicutes, Bacteroidetes, and Spirochaetes in the feces, respectively. In the analysis of alpha, beta diversity, and effect size measurements (LefSe), the results showed significant differences between the vaginal and fecal samples. We also identified the function of these differentially abundant microorganisms by functional annotation analyses. But there is no significant correlation between vaginal and fecal microbiome. Conclusion: There is a significant difference between vaginal and fecal microbiome, but no significant correlation. Therefore, it is difficult to interrelate vaginal microbiome as fecal microbiome in Hanwoo. In a further study, it will be necessary to identify the genetic relationship of the entire microorganism between vagina and feces through the whole metagenome sequencing analysis and meta-transcriptome analysis to figure out their relationship.