Acknowledgement
This study was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ0148262020)" Rural Development Administration, Republic of Korea.
References
- de Oliveira MNV, Jewell KA, Freitas FS, et al. Characterizing the microbiota across the gastrointestinal tract of a Brazilian Nelore steer. Vet Microbiol 2013;164:307-14. https://doi.org/10.1016/j.vetmic.2013.02.013
- Gomez DE, Arroyo LG, Costa MC, Viel L, Weese JS. Characterization of the fecal bacterial microbiota of healthy and diarrheic dairy calves. J Vet Intern Med 2017;31:928-39. https://doi.org/10.1111/jvim.14695
- Fecteau ME, Pitta DW, Vecchiarelli B, et al. Dysbiosis of the Fecal Microbiota in Cattle Infected with Mycobacterium avium subsp. paratuberculosis. PLoS One 2016;11:e0160353. https://doi.org/10.1371/journal.pone.0160353
- Sheldon IM, Dobson H. Postpartum uterine health in cattle. Anim Reprod Sci 2004;82:295-306. https://doi.org/10.1016/j.anireprosci.2004.04.006
- Wang J, Xu J, Han Q, et al. Changes in the vaginal microbiota associated with primary ovarian failure. BMC Microbiol 2020;20:230. https://doi.org/10.1186/s12866-020-01918-0
- Appiah MO, Wang J, Lu W. Microflora in the reproductive tract of cattle: a review. Agriculture 2020;10:232. https://doi.org/10.3390/agriculture10060232
- Clemmons BA, Reese ST, Dantas FG, et al. Vaginal and uterine bacterial communities in postpartum lactating cows. Front Microbiol 2017;8:1047. https://doi.org/10.3389/fmicb.2017.01047
- Quereda JJ, Barba M, Moce ML, et al. Vaginal microbiota changes during estrous cycle in dairy heifers. Front Vet Sci 2020;7:371. https://doi.org/10.3389/fvets.2020.00371
- Wang Y, Ametaj BN, Ambrose DJ, Ganzle MG. Characterisation of the bacterial microbiota of the vagina of dairy cows and isolation of pediocin-producing Pediococcus acidilactici. BMC Microbiol 2013;13:19. https://doi.org/10.1186/1471-2180-13-19
- Dobbler P, Mai V, Procianoy RS, et al. The vaginal microbial communities of healthy expectant Brazilian mothers and its correlation with the newborn's gut colonization. World J Microbiol Biotechnol 2019;35:159. https://doi.org/10.1007/s11274-019-2737-3
- Amabebe E, Anumba DOC. Female gut and genital tract microbiota-induced crosstalk and differential effects of shortchain fatty acids on immune sequelae. Front Immunol 2020; 11:2184. https://doi.org/10.3389/fimmu.2020.02184
- Klein-Jobstl D, Quijada NM, Dzieciol M, et al. Microbiota of newborn calves and their mothers reveals possible transfer routes for newborn calves' gastrointestinal microbiota. PLoS One 2019;14:e0220554. https://doi.org/10.1371/journal.pone.0220554
- Laguardia-Nascimento M, Branco KMGR, Gasparini MR, et al. Vaginal microbiome characterization of Nellore cattle using metagenomic analysis. PLoS One 2015;10:e0143294. https://doi.org/10.1371/journal.pone.0143294
- Woo JS, Kim KH, Cho ES, et al. Effect of microorganisms collected from uterus of Hanwoo cattle with low conception rate on the development of IVF-derived embryos. Korean J Agric Sci 2015;42:355-9. https://doi.org/10.7744/cnujas.2015.42.4.355
- Holman DB, Gzyl KE. A meta-analysis of the bovine gastrointestinal tract microbiota. FEMS Microbiol Ecol 2019;95: fiz072. https://doi.org/10.1093/femsec/fiz072
- Kim ET, Lee SJ, Kim TY, et al. Dynamic changes in fecal microbial communities of neonatal dairy calves by aging and diarrhea. Animals 2021;11:1113. https://doi.org/10.3390/ani11041113
- Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 2019;37:852-7. https://doi.org/10.1038/s41587-019-0209-9
- Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 2016;13:581-3. https://doi.org/10.1038/nmeth.3869
- McDonald D, Price MN, Goodrich J, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 2012; 6:610-8. https://doi.org/10.1038/ismej.2011.139
- Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods 2013;10:1200-2. https://doi.org/10.1038/nmeth.2658
- Douglas GM, Maffei VJ, Zaneveld J, et al. PICRUSt2: An improved and customizable approach for metagenome inference. bioRxiv 2020:672295. https://doi.org/10.1101/672295
- Fernandes AD, Reid JNS, Macklaim JM, et al. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2014;2:15. https://doi.org/10.1186/2049-2618-2-15
- Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005;102:15545-50. https://doi.org/10.1073/pnas.0506580102
- Wang J, Li Z, Ma X, et al. Translocation of vaginal microbiota is involved in impairment and protection of uterine health. Nat Commun 2021;12:4191. https://doi.org/10.1038/s41467-021-24516-8
- Ling Z, Kong J, Liu F, et al. Molecular analysis of the diversity of vaginal microbiota associated with bacterial vaginosis. BMC Genomics 2010;11:488. https://doi.org/10.1186/1471-2164-11-488
- Freetly HC, Dickey A, Lindholm-Perry AK, et al. Digestive tract microbiota of beef cattle that differed in feed efficiency. Anim Sci J 2020;98:skaa008. https://doi.org/10.1093/jas/skaa008
- Ravel J, Gajer P, Abdo Z, et al. Vaginal microbiome of repro - ductive-age women. Proc Natl Acad Sci USA 2011;108:4680-7. https://doi.org/10.1073/pnas.1002611107
- Miller EA, Beasley DE, Dunn RR, Archie EA. Lactobacilli dominance and vaginal pH: why is the human vaginal microbiome unique? Front Microbiol 2016;7:1936. https://doi.org/10.3389/fmicb.2016.01936
- Ault TB, Clemmons BA, Reese ST, et al. Bacterial taxonomic composition of the postpartum cow uterus and vagina prior to artificial insemination. Anim Sci J 2019;97:4305-13. https://doi.org/10.1093/jas/skz212
- Alipour MJ, Jalanka J, Pessa-Morikawa T, et al. The composition of the perinatal intestinal microbiota in cattle. Sci Rep 2018;8:10437. https://doi.org/10.1038/s41598-018-28733-y
- Mao S, Zhang M, Liu J, Zhu W. Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function. Sci Rep 2015;5:16116. https://doi.org/10.1038/srep16116
- La Reau AJ, Suen G. The Ruminococci: key symbionts of the gut ecosystem. J Microbiol 2018;56:199-208. https://doi.org/10.1007/s12275-018-8024-4
- Papale M, Rizzo C, Caruso G, et al. First insights into the microbiology of three Antarctic briny systems of the Northern Victoria Land. Diversity 2021;13:323. https://doi.org/10.3390/d13070323
- Mattos-Graner RO, Duncan MJ. Two-component signal transduction systems in oral bacteria. J Oral Microbiol 2017;9: 1400858. https://doi.org/10.1080/20002297.2017.1400858
- Thomas L, Cook L. Two-component signal transduction systems in the human pathogen Streptococcus agalactiae. Infect Immun 2020;88:e00931-19. https://doi.org/10.1128/IAI.00931-19
- Seo JS, Keum YS, Li QX. Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 2009;6:278-309. https://doi.org/10.3390/ijerph6010278
- Kwon M, Seo SS, Kim MK, Lee DO, Lim MC. Compositional and functional differences between microbiota and cervical carcinogenesis as identified by shotgun metagenomic sequencing. Cancers 2019;11:309. https://doi.org/10.3390/cancers11030309
- Meale SJ, Li S, Azevedo P, et al. Weaning age influences the severity of gastrointestinal microbiome shifts in dairy calves. Sci Rep 2017;7:198. https://doi.org/10.1038/s41598-017-00223-7