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Abstract
Antibiotics have been used in livestock production for not only treatment but also for increas-
ing the effectiveness of animal feed, aiding animal growth, and preventing infectious diseases 
at the time when immunity is lowered due to stress. South Korea and the EU are among the 
countries that have prohibited the use of antibiotics for growth promotion in order to prevent 
indiscriminate use of antibiotics, as previous studies have shown that it may lead to increase 
in cases of antibiotic-resistant bacteria. Therefore, this study evaluated the number of anti-
biotic resistance genes in piglets staging from pre-weaning to weaning. Fecal samples were 
collected from 8 piglets just prior to weaning (21 d of age) and again one week after weaning 
(28 d of age). Total DNA was extracted from the 200 mg of feces collected from the 8 piglets. 
Whole metagenome shotgun sequencing was carried out using the Illumina Hi-Seq 2000 
platform and raw sequence data were imported to Metagenomics Rapid Annotation using 
Subsystem Technology (MG-RAST) pipeline for microbial functional analysis. The results of 
this study did not show an increase in antibiotic-resistant bacteria although confirmed an in-
crease in antibiotic-resistant genes as the consequence of changes in diet and environment 
during the experiment.
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INTRODUCTION
Antibiotics have been used in livestock production for a longtime [1]. They have been employed 
in intensive farming to boost productivity. In animals, antibiotics is commonly used for not only 
treatment but also for increasing the effectiveness of animal feed, promoting animal growth, and 
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preventing diseases at a time when their immunity is low due to stress [2]. However, careless usage 
of antimicrobials lead to a rise in antibiotic-resistant bacteria and genes [3,4]. Increased antibiotic 
resistance can raise disease incidence and cause chronic health problems in livestock. So, the use of 
antibiotics for fostering growth in livestock is no longer permitted in the EU and South Korea [5]. 

Antibiotic-resistant bacteria can be discharged into the surrounding environment, the soil and 
water which can act as sources for transmission of antibiotic-resistant bacteria [2]. In addition, there 
are reports of transmission of antibiotic-resistant genes in a surrounding environment adjacent 
to the pig farm [6]. During the weaning period, piglets are exposed to a variety of stressors, such 
as changes in feed composition and environment [7,8]. Prior researches have shown that these 
stressors alters the piglet gut microbiome during nursing and weaning phases [9]. However, it is 
uncertain whether the gut microbial shifts are associated with the increased antibiotic-resistant 
genes in pigs during the weaning transition. In addition, from pre-weaning to weaning pigs are 
gradually exposed to more environment such as soil and water. Due to such environmental exposure, 
antibiotic resistance in piglets can increase and remain in animal-derived products for human 
consumption, so antibiotic-resistant gene is observed as “One Health subject” [2]. Therefore, the 
whole metagenome shotgun sequencing was used in this study to evaluate changes in microbiome 
and antibiotic-resistant genes during weaning transition.

MATERIALS AND METHODS
Piglet fecal sampling
Fecal samples were collected from 8 piglets in a gap of 1 week, firstly just before weaning (21 d of 
age) and secondly one week after weaning (28 d of age) and placed in sterile test tubes and stored at 
−80℃. After weaning, the piglets were fed a conventional nursery feed based on soybean meal and 
corn, that complied with National Research Council standards [10,11]  of nutrient requirements 
of weaned piglets. The piglets had unrestricted access to feed and water. The piglets received no 
additional supplements or antibiotics through the whole duration of the experiment.

Fecal DNA extraction
200 mg of feces per sample were used for the total DNA extraction, using QIAamp Fast 
DNA Stool Mini Kit (QIAGEN, Hilden, Germany), as per the instructions provided by the 
manufacturer. Cell lysis was achieved by bead-beating the samples twice for 2 min at 300 rpm, 
followed by a 5-minute incubation period in a water bath at 70℃ between beatings. A Colibri 
Microvolume Spectrometer (Titertek Berthold, Pforzheim, Germany) was used to measure the 
concentrations of DNA and only the samples that had OD260/280 ratio between 1.80 and 2.15 
underwent further processing.

Whole metagenome shotgun sequencing 
The paired-end shotgun sequencing using the Illumina Hi-Seq 2000 platform was used to sequence 
the extracted DNA representing the fecal microbial communities. The whole metagenome shotgun 
sequencing was carried out at Macrogen (Seoul, Korea).

Whole metagenome shotgun sequence analysis
Whole metagenome shotgun sequencing was carried out on a subset of eight samples randomly 
chosen (four samples from the same piglets at 21 and 28 days of age) to examine the microbial 
diversities and fecal microbial functions present in the piglet fecal samples. For the microbial 
functional analysis, the obtained raw sequence data in FASTQ format were imported to 
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Metagenomics Rapid Annotation using Subsystem Technology (MG-RAST) pipeline. All the 
classified subsystem reads were normalized in MG-RAST. To account for differences in sequencing 
depth of samples, DESeq was utilized within the analysis pipeline [12]. MG-RAST pipeline was 
used for removing artificial duplicate reads [13]. MG-RAST also removed sequence reads that 
matched the host’s genome through Bowtie.  [14]. The Reference Swine Genome (Sus scrofa, 
NCBI v10.2) available in MG-RAST was used to filter out the host-derived metagenomic reads 
[13]. The SEED Subsystems database, which is a collection of functionally related protein families, 
was used for the functional annotation of the sequence reads [15]. Using an e-value of less than 1 
× 10−5, minimum identity of 60%, and a minimum alignment length of 15 amino acids for protein, 
the similarity search between sequence reads and the SEED databases was performed. For the 
taxonomic assignment of the sequences, the Greengenes reference database was utilized. Significant 
variations in functional profiles and taxonomic compositions between the nursing and weaned 
pigs were determined based on Multiple t-test, using STAMP and GraphPad Prism version 7.00 
(GraphPad Software, La Jolla, CA, USA).

RESULTS AND DISCUSSION
Microbial functional characteristics of the piglet gut metagenome associated with 
“Resistance to antibiotics and toxic compounds” 
In general, a total of 50,440,732 sequences was obtained by the whole metagenome shotgun 
sequencing using HiSeq Illumina platform. After microbial functional analysis using MG-
RAST pipeline, 28 level 1 SEED subsystems were identified in both nursing and weaned piglet 
metagenome, and the functional gene groups associated with level 2 SEED subsystem “Resistance 
to antibiotics and toxic compounds” within the level 1 SEED subsystem “Virulence, disease, and 
defense” (Fig. 1A) were studied further. At the level 3 SEED subsystems within the level 2 SEED 
subsystem “Resistance to antibiotics and toxic compounds”, gene families related to “Resistance to 
vancomycin”, “Resistance to tetracycline”, “Multidrug resistance_efflux pumps” and “Methicillin 
resistance in Staphylococcus aureus (MRSA)” tended to increase, although not significantly in the 
weaned piglets than nursing ones (Fig. 1B). In the “Resistance to vancomycin”, the vancomycin 
binding blocking protein “B-type resistance protein VanW” was significantly enriched (p < 0.05), 

Fig. 1. Comparison of the functional capacities between nursing and weaned pigs. (a) Level 2 SEED 
subsystems within the level 1 SEED subsystem “Virulence, disease and defense”. (b) Level 3 SEED 
subsystems within the level 2 SEED subsystem “Resistance to antibiotics and toxic compounds”.
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and “response regulator VanR” and “Sensor histidine kinase VanS (EC 2.7.3.-) tended to increase 
(Fig. 2A). In “Resistance to tetracycline”, only ribosomal protection proteins (RPPs) related genes 
were detected and increased on average (Fig. 2B). In the “Multidrug resistance_efflux pumps”, “Multi 
antimicrobial extrusion protein MATE family of MDR efflux pumps” and “RND efflux membrane 
fusion protein” that related in extrusion of toxic substrates into the cellular environment were largely 
present in the weaned piglets (Fig. 2C). In the “MRSA, “UDP-N-acetylmuramoylalanyl-D-
glutamate--2, 6-diaminopimelate ligase (murE)”, “D-alanyl transfer protein DltB”, “Poly D-alanine 
transfer protein DltD”, “Methicillin resistance and cell wall biosynthesis protein FmtB” and 
“D-alanine-poly ligase subunit 2 (DltC) (EC 6.1.1.13)” which function as methicillin resistance 
and cell wall biosynthesis were slightly higher in the weaned piglets than nursing piglets (Fig. 2D). 

Vancomycin is a β-lactam glycopeptide antibiotics that binds to acyl-D-ala-D-ala of the 
peptidoglycan cell wall to inhibit cell wall biosynthesis, but acts only on gram-positive bacteria 
because it cannot pass through the lipid bilayer of gram-negative bacteria [16]. There are two types 
of glycopeptide resistance through conversion to D-ala-D-lac [17,18]. As a results of detection, 
B-type proteins were higher which is resistance to vancomycin and vulnerable to teicoplanin. 

Fig. 2. Comparison of normalized sequence abundance at the level 4 SEED subsystem associated with (a) 
Resistance to vancomycin. (b) Resistance to tetracycline. (c) Multidrug resistance_efflux pumps. (d) Methicillin 
resistance in Staphylococcus aureus (MRSA). ATP, adenosine triphosphate.
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Tetracycline prevents the binding of aminoacyl-tRNA and ribosome with 30S prokaryotic 
ribosomal subunit as a target, resulting in translation inhibition [19,20]. Mainly, TetQ is found 
in anaerobic gram-negative species with a limited host range, TetM is located in specific part of 
Enterococcus faecalis and TetO is found in Gram-positive species such as Streptococcus pyogenes [21–
23]. These RPPs restore A-site delivery of aminoacyl-tRNA to give resistance to tetracycline [24]. 
According to sources of energy utilized (adenosine triphosphate [ATP] or Hydrogen/sodium ions) 
and amino acid sequences, efflux pumps are classified into five major active super families: Major 
facilitator superfamily (MFS), Resistance nodulation cell division superfamily (RND), MATE, 
ATP Binding cassette transporter (ABC) and Small multidrug resistance (SMR) [25]. All bacteria 
contain several efflux pumps, which extrude not only antibiotic substrates but also non-antibiotic 
substrates such as heavy metals, dyes, detergents and organic solvents [26–28]. There are reports of 
fluoroquinolone transported by MATE in mammals, and RNDs were distributed in gram-negative 
bacteria to export β-lactams out of outer-membrane [29–33]. The murE and fmtB gene detected 
in MRSA are associated with cell-wall peptidoglycan biosynthesis, and nothing else is known 
about the fmtB gene [34,35]. The lipoteichoic acid, which constitutes the cell wall of gram-positive 
bacteria, is made through D-alanylation of LTA through DltA-D [36]. Due to the mechanism 
of methicillin, which binds to PBP2a to biosynthesis of cell wall, it is considered that methicillin 
resistance increased as the number of genes associated with cell wall biosynthesis increased. 

Taxonomic classification of the bacteria using whole metagenome shotgun sequences 
Using the whole metagenome shotgun sequences, the relative abundance of the gut microbiota 
was compared at the phylum and genus levels during the weaning transition (Fig. 3). The results 
from total sequence analysis confirmed significant change in bacterial composition after the 
weaning transition. At the phylum level, nursing piglet showed presence of Bacteroidetes (43.18%), 
Firmicutes (40.5%), Spirochaetes (5.21%), Proteobacteria (2.8%), Actinobacteria (1.47%), 
Tenericutes (1.2%) and other 6 phylum (0.8%) (Fig. 3A). After weaning transition, piglet gut 
microbiota were consisted of Bacteroidetes (71.5%), Firmicutes (22.46%), Spirochaetes (0.57%), 
Proteobacteria (0.43%), Actinobacteria (0.71%), Tenericutes (0.28%) and other phylum (0.26%) 
(Fig. 3A). Compared to before the weaning transition, Bacteroidetes increased significantly from 
40.5% to 71.5% on average (p < 0.01). At the genus level, Prevotella showed the largest amount of 
abundance, and enriched on average 16.57% to 61.09% that significantly increased after weaning 
(p < 0.001). Streptococcus increased only by a small amount from 0.13% to 0.28%. The relative 
abundances of other genera were shown in Fig. 3B. The genus Prevotella, which has the ability to 
break down protein and carbohydrate in feed, increased significantly with the change in diet from 

Fig. 3. Comparison of gut microbiome relative abundance at the (a) phylum and (b) genus levels during 
the weaning transition.
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milk to grain feed during the weaning transition [37]. Unlike the tendency of antibiotic resistance 
genes to increase after weaning, there were no significant increase in the relative abundance of major 
antibiotic resistant bacteria such as Staphylococcus aureus, Enterococcus and Mycobacterium tuberculosis. 
The data from this study showed that changes in diet and environment can be a potential health 
risk factor and may affect piglets. 
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