• Title/Summary/Keyword: white rot.

Search Result 436, Processing Time 0.036 seconds

Breeding of a Multi-flowering and Early-flowering White Calla Lily Cultivar 'White Cutie' Resistant to Soft Rot Disease (절화수량이 우수한 무름병 저항성 조생 백색칼라 'White Cutie' 육성)

  • Joung, Hyang Young;Cho, Hae Ryong;Rhee, Ju Hee;Shin, Hak Ki;Park, Sang Kun
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.618-623
    • /
    • 2015
  • The new white calla lily (Zantedeschia aethiopica) cultivar 'White Cutie' was bred at the National Institute of Horticultural & Herbal Science (NIHHS) in 2011. 'Childsiana' showing the multi-flowering characteristic and 'Wedding March' resistant to soft rot disease were artificially crossed in 2004. Of the progeny, 'White Cutie' was selected specifically for use in cut flower production after investigation over seven years (2005 to 2011) of genetic and phenotypic characteristics, resistance against soft rot, and customer preference regarding the culture vigor and post-harvest quality. 'White Cutie' was early flowering (85.6 days to flowering) with white flowers (RHS W155C), although it had a mid-sized flower in which spathe height and width were 8.6 cm and 8.7 cm, respectively. It was multi-flowering (6.2 flowers per plant) and produced a very high number of cormels (13.4 per plant). Furthermore, it was resistant to soft rot disease.

Biological Control of Paraconiothyrium minitans S134 on Garlic White Rot Caused by Sclerotium cepivorum (Paraconiothyrium minitans S134의 마늘흑색썩음균핵병에 대한 생물적 방제)

  • Lee, Sang Yeob;Hong, Sung Kee;Choi, In Hu;Chon, Yong Dal;Kim, Jeong Jun;Han, Ji Hee;Kim, Wan Gyu
    • The Korean Journal of Mycology
    • /
    • v.40 no.4
    • /
    • pp.282-287
    • /
    • 2012
  • Sclerotium cepivorum is a causal agent of white rot disease on different plants including Allium species such as garlic. A mycoparasite, Paraconiothyrium minitans S134 was selected for biological control of sclerotinia rot of garlic caused by S. cepivorum. The experiment was carried out in a garlic field in Taean from October in 2011 to June in 2012. Spore suspension of the mycoparasite was treated twice onto soil surface around garlic plants in sowing in 2011 and late Feb. in 2012, and disease rating was made June in 2012. Incidence of white rot in the twice-application plot of the mycoparasite ($5{\times}10^6$ spores/mL) and in the fluquinconazole (WP)-treated plot was 6.8% and 0.4%, respectively, whereas that of control was 19.5%. As the results, P. minitans S134 could be a prospective biofungicide for biological control of white rot of garlic.

Collar Rot of Safflower Caused by Sclerotium rolfsii (Sclerotium rolfsii에의한 잇꽃 흰비단병)

  • 권진혁
    • Plant Disease and Agriculture
    • /
    • v.5 no.2
    • /
    • pp.119-121
    • /
    • 1999
  • A destructive collar rot of safflower occurred severely research farm of at Kyongsangnam-do Agricultural Research and Extension Services in 1999. Incidence of the disease at 3 fields in Chinju was ranged from 21.6 to 34.2% Upper parts of infected stems were mostly blighted and white mycelia were found on the lesions. The same fungus was isolated consistently from the infected tissues and confirmed its pathogenecity to safflower. The causal fungus of collar rot disease was identified as Sclerotium rolfsii by the examination of colony type sclerotium formation and pathogenicity test. This fungus also causes stem rot crown rot wilt or blight on the safflower. This is the first report on the collar rot of safflower caused by Sclerotium rolfsii in Korea.

  • PDF

An Infection Model of Apple White Rot Based on Conidial Germination and Appressorium Formation of Botryosphaeria dothidea

  • Kim, Ki-Woo;Kim, Kyu-Rang;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.322-327
    • /
    • 2005
  • Regression models for determining infection periods of apple white rot were developed based on conidial germination and appressorium formation of Botryosphaeria dothidea. A total of 120 apple fruits were inoculated with the fungal conidial suspension and subjected to 6 temperatures and 10 wetness periods. Conidia germinated and produced appressoria, exhibiting swollen tips of germ tubes on the fruit surface. Conidial germination (G) increased with temperature (T) and wetness period (W), and was described as $G=-89.273+7.649T+7.056W-0.109T^{2}-0.085W^{2}-0.066TW(R^{2}=0.75)$. Less than 2 hr of wetness period were enough for conidia to germinate at 25 to $30^{\circ}C$. Effects of temperature and wetness period on appressorium formation (A) could be explained as $A=-1.540-2.375W+0.045W^{2}+0.213TW(R^{2}=0.77)$. The relationship between conidial germination and appressorium formation ($A_g$) was described as$A_g=0.381-0.227G+0.005G^{2}(R^{2}=0.67)$, suggesting that conidial germination may have to reach approximately $43.7\%$ to initiate appressorium formation. Using the regression equation for conidial germination and the criterion of $43.7\%$ conidial germination, an infection model was developed to determine infection periods based on temperature and wetness period. The infection model with the criterion of $43.7\%$ conidial germination was apparently more conservative than the appressorium formation model in determining possibility of apple infection. The infection model seemed sensitive to variable weather conditions, suggesting possible use of the model for timing fungicide sprays to control white rot of apples in practice.

Treatment and Attachment Characteristics of Biofilm of Phanerochaete chrysosporium PSBL-1 in Wastewater (Phanerochaete chrysosporium PSBL-1 생물막을 이용한 오.폐수 처리 및 부착특성)

  • Lee, Soon-Young;Kang, Ki-Cheol;Won, Chan-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.271-277
    • /
    • 2008
  • The biofilm of white-rot fungi fully exposed in atmosphere are that operation is easy, management cost and energy waste is low. To develop biofilm of white-rot fungi fully exposed in atmosphere, basic test are as follows. To select most effective microoganism species, investigated treatment characteristics of wastewater containing non-biodegradable material for three species of white-rot fungi(Phanerochaete chrysosporium PSBL-1, Phanerochaete chrysosporium KCTC 6147, Trametes sp. KFCC 10941) and activated sludge. And then investigated attached and detached biomass of selected white-rot fungi species on HBC ring surface. Among the three strains tested, P. chrysosporium PSBL-1 and P. chrysosporium KCTC 6147 showed higher efficiency for organics removal than Trametes sp. KFCC 10941, and P. chrysosporium PSBL-1 showed higher efficiency for nitrogen removal than P. chrysosporium KCTC 6147 and Trametes sp. KFCC 10941. Respectively, 51$\sim$59.8%, 57.5$\sim$60.3% of NBDCOD was removed for P. chrysosporium PSBL-1 and P. chrysosporium 6147 in pH 3.5$\sim$5.5. TN removal efficiency showed 39.3$\sim$85.3%, 3.4$\sim$7.6% for P. chrysosporium PSBL-1 and P. chrysosporium 6147 in pH 4.5$\sim$11.5 respectively. Considered that white-rot fungi remove organism and nitrogen simultaneously, the microorganism selected white-rot fungi P. chrysosporium PSBL-1. White-rot fungi P. chrysosporium PSBL-1 attached on HBC ring surface 4,538 mg/L, 4,546 mg/L, 4,531 mg/L after 5 minutes, 4,575 mg/L, 4,573 mg/L, 4,568 mg/L after 10 minutes from initial MLSS 4,600 mg/L in pH 4, 7 and 10 respectively. Also detached biomass is negligible from right after attachment to 10 day in pH 4, 7 and 10.

The First Report of Postharvest Stem Rot of Kohlrabi Caused by Sclerotinia sclerotiorum in Korea

  • Kim, Joon-Young;Aktaruzzaman, Md.;Afroz, Tania;Hahm, Young-Il;Kim, Byung-Sup
    • Mycobiology
    • /
    • v.42 no.4
    • /
    • pp.409-411
    • /
    • 2014
  • In March 2014, a kohlrabi stem rot sample was collected from the cold storage room of Daegwallyong Horticultural Cooperative, Korea. White and fuzzy mycelial growth was observed on the stem, symptomatic of stem rot disease. The pathogen was isolated from the infected stem and cultured on potato dextrose agar for further fungal morphological observation and to confirm its pathogenicity, according to Koch's postulates. Morphological data, pathogenicity test results, and rDNA sequences of internal transcribed spacer regions (ITS 1 and 4) showed that the postharvest stem rot of kohlrabi was caused by Sclerotinia sclerotiorum. This is the first report of postharvest stem rot of kohlrabi in Korea.

Sclerotinia Rot in Stringy Stonecrop Caused by Sclerotinia sclerotiorum

  • Wan-Gyu Kim;Hyo-Won Choi;Gyo-Bin Lee;Weon-Dae Cho
    • The Korean Journal of Mycology
    • /
    • v.50 no.2
    • /
    • pp.143-147
    • /
    • 2022
  • Sclerotinia rot symptoms were observed in stringy stonecrop (Sedum sarmentosum) plants growing in vinyl greenhouses in Yeoju and Icheon, Gyeonggi Province, Korea, during disease surveys in spring 2019 and 2020. The initial symptoms were soft rot on stems and leaves at or above the soil line. Furthermore, the symptoms progressed upwards, and the infected plant parts exhibited white to grayish-yellow discoloration. The infestation of diseased plants in the vinyl greenhouses was 1-5% at the two locations examined. Eight isolates of Sclerotinia sp. were obtained from lesions of the diseased plants. The isolates were identified as Sclerotinia sclerotiorum based on their morphological and molecular characteristics. In addition, artificial inoculation tested three isolates of S. sclerotiorum for pathogenicity on stringy stonecrop plants. All the tested isolates caused Sclerotinia rot symptoms in the inoculated plants. The symptoms were similar to those observed in plants from the vinyl greenhouses investigated. This study is the first report of S. sclerotiorum causing Sclerotinia rot in stringy stonecrop.

Biodegradation of Pyrene by the White Rot Fungus, Irpex lacteus

  • Hwang, Soon-Suk;Song, Hong-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.344-348
    • /
    • 2000
  • Abstract The removal percentage (94%) of 100 ppm of pyrene in a shaken culture of white rot fungus, Irpex lacteus, was much higher than that in a static culture (37.9%). Over 90% of the pyrene disappeared with I. lacteus grown at $15-27^{\circ}C$, yet less than 50% was removed at $37^{\circ}C$. The transformation rates of pyrene ($4.5-5.0{\;}\mu\textrm{g}/ml/day$) were not very different among cultures with 5- 30% inoculum sizes, and over 90% of the 100 ppm pyrene was removed in every case during 20 days of incubation. The biodegradation of pyrene by I. lacteus was confirmed by measuring the $CO_2$ evolved from the mineralization of the added pyrene. The activity of lignin peroxidase (LiP), which is known to be involved in the biodegradation by white rot fungi, was high between 8 to 12 days of incubation. Although manganese peroxidase activity was demonstrated during the same period as LiP, its activity was quite low, and no laccase activity was detected. Even though the activity patterns of ligninolytic enzymes did not coincide with the pyrene removal, this study shows that I. lacteus has a high biodegrading capability and can be a candidate for the bioremediation of polycyclic aromatic hydrocarbon contaminants.inants.

  • PDF

Post-infectional Activities of Non-systemic Fungicides Against Apple White Rot

  • Park, Chang-Hee;Hyun Woo;Kim, Dae-Hee;Uhm, Jae-Youl
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.92.1-92
    • /
    • 2003
  • In order to develop an effective spray program for control of apple white rot with reduced use of fungicides, the control efficacy of several fungicides that has been intensively used for control of the disease was assessed. They were sprayed on the same tree with 15 day interval from late May to early August. Just prior to and after each spray, 100 fruits were bagged with two layered fruit bag to limit the chemical application in only one time, and the disease incidence and latent infection frequency on the bagged apples were examined. Some fungicides such as folpet, iminoctadine-triacetate and azoxystrobin showed a high post-infectional activity even though the former two are non- systemic. Folpet suppressed symptom development, iminoctadine-triacetate reduced infection frequency and azoxystrobin acted in both ways. When those fungicides were !! adopted in a spray program, once in a cropping season, their post-infectional activity became much greater. This activity shown by the non-systemic fungicides was supposed to be derived from the peculiar infection process of the white rot fungus of which the pathogen is usually remain latent in the corked cells of lenticel until the apple reach mature stage.

  • PDF