• Title/Summary/Keyword: wheel/rail adhesion

Search Result 47, Processing Time 0.023 seconds

Finite Element Analysis and Static Load Test of a Wheelset of Gwangju EMU for Measuring Wheel/Rail Force (차륜/궤도 작용력 측정을 위한 광주전동차 윤축의 구조해석 및 정하중 시험)

  • Jeon Eung-Sik;Ham Young-Sam;Chung Woo-Jin
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.762-767
    • /
    • 2003
  • The railroad is a means of large transportation which has many talents such as a safety and a regularity. That is a results from various confidential performance tests and evalutions of the system. The railroad system consist of various subsystems - vehicle, power spply, signal communications, track structures, operations, etc. Among them as an item of safety evaluation there is a measurement of wheel/rail force, so called a measurement of derailment coefficient. This is a very important item because a derailment of a train will bring about a big accident. Especially it is more important in high speed rail of which operation speed is over two times as fast as existing rail. In this paper, it is introduced to preprocess the wheelset for measuring wheel/rail force of Gwangiu EMU, such as to treat a measuring wheelset its finite element analysis, adhesion of strain gauges and static load test.

  • PDF

Simulation for High Speed Trains with Wheel - Rail Fuzzy Adhesion model (휠-레일 점착 퍼지 모델에 의한 고속전철의 주행 시뮬레이션에 관한 연구)

  • Kim, Moon-Sup;Kim, Dong-Woo;Shin, Doo-Jin;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.347-349
    • /
    • 1998
  • This paper describes a fuzzy identification model for slip - adhesion curve of High - speed trains. The model has fuzzy inputs corresponding to rail condition and crisp inputs for train. Nonlinear function is obtained by using fuzzy outputs. Finally slip - adhesion curve is given by the function. First, Results are presented of slip - adhesion curves under the influence of changing rail condition. Second, Dynamic moving simulation by proposed fuzzy slip - adhesion model is presented. Simulation results show fine characteristics.

  • PDF

Traction Motor Controls for High Speed Railway System (고속전철용 견인전동기 제어)

  • Jeon, J.W.;Park, J.W.;Lim, K.H.;Kim, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.381-383
    • /
    • 1998
  • The dynamics of the interaction between the wheel and rail must be considered when investigating the application of control strategy to a traction motor for high speed railway system. So this paper describes a dynamics model of the wheel rail adhesion characteristics and simple adhesion control strategy. Simulations are performed on the model of korea-high speed railway system using SIMULINK. With simple adhesion control strategy advanced characteristics of the system is showed in aspects of driveability.

  • PDF

Anti-Slip Control by Adhesion Effort Estimation of Railway Vehicle (철도차량장치의 점착력 추정에 의한 Anti-Slip 제어)

  • 김길동;이호용;안태기;홍재성;한석윤;전기영
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.257-264
    • /
    • 2003
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

Structural Strength Analysis and Static Load Test of a Wheelset of Korean High Speed Rail for Measuring Whee/Rail Force (한국형 고속철도차량의 차륜/궤도 작용력 측정을 위한 윤축의 구조강도 해석 및 정하중 시험)

  • 전응식;함영삼;허현무;강부병
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.898-903
    • /
    • 2002
  • The railroad is a means of large transportation which has many talents such as a safety and a regularity. That is a results from various confidential performance tests and evaluations of the system. The railroad system consist of various subsystems - vehicle, power supply, signal, communications, track structures, operations, etc. Among them, as an item of safety evaluation there is a measurement of wheel/rail force, so called a measurement of derailment coefficient. This is a very important item because a derailment of a train will bring about a big accident. Especially it is more inportant in high speed rail of which operation speed is over two times as fast as existing rail. In this paper, it is introduced to preprocess the wheelset for measuring wheel/rail force of high speed rail, such as to treat a measuring wheelset, its finite element analysis, adhesion of strain gauges and static load test.

  • PDF

Anti-Slip Control and Speed Sensor-less Vector Control of the Railway Vehicle (철도차량의 Anti-Slip 제어 및 속도센서리스 벡터제어)

  • Jho Jeong-Min;Kim Gil-Dong
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.3
    • /
    • pp.216-221
    • /
    • 2005
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the wright of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control based on disturbance observer and sensor-less vector control. The numerical simulation and experimental results point out that the proposed re-adhesion control system has the desired driving wheel torque response for the tested bogie system of electric coach. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

Evaluation of running safety for korean high speed railway vehicle (한국형 고속철도차량의 주행안전성 평가)

  • Ham Young-Sam;Hur Hyun-Moo
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.316-321
    • /
    • 2003
  • The railroad is a means of large transportation which has many talents such as a safety and a regularity. That is a results from various confidential performance tests and evaluations of the system. The railroad system consist of various subsystems - vehicle, power supply, signal, communications, track structures, operations, etc. Among them, as an item of safety evaluation there is a measurement of wheel/rail force, so called a measurement of derailment coefficient. This is a very important item because a derailment of a train will bring about a big accident. Especially it is more important in high speed rail of which operation speed is over two times as fast as existing rail. In this paper, it is introduced to preprocess the wheelset for measuring wheel/rail force of high speed rail, such as to treat a measuring wheelset, adhesion of strain gauges and static load test, running test result of main line.

  • PDF

Re-adhesion control performance improvement for a vector controlled electric motor coach (백터제어 전동차의 재점착 성능개선에 관한 연구)

  • Byun Yeun-Sub;Lee Byung-Song;Han Kyung-Hee;Bae Chang-Han
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1455-1460
    • /
    • 2004
  • In electric motor coaches, when the adhesion force coefficient between rail and driving wheel decreases suddenly, the electric motor coach has slip phenomena. The characteristics of adhesion force coefficient is strongly affected by the conditions between rails and driving wheels, such as moisture, dust, and oil on the rails and so on. This paper proposes the vector control structure for the improved re-adhesion control with paralleled control of induction motors under the sudden variation of the adhesion force coefficient.

  • PDF

Characteristic Analysis of Superconducting LSM for the Wheel-rail-guided Very High Speed Train according to Winding Method of the Ground 3-phase Coils (휠-레일 방식 초고속열차용 초전도 선형동기전동기의 지상권선 방식별 특성 분석)

  • Park, Chan-Bae;Lee, Byung-Song;Lee, Chang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1164-1169
    • /
    • 2014
  • Recently, an interest in a hybrid system combining only the merits of the conventional wheel-rail system and Maglev propulsion system is growing as an alternative to high-speed maglev train. This hybrid-type system is based on wheel-rail method, but it enables to overcome the speed limitation by adhesion because it is operated by a non-contact method using a linear motor as a propulsion system and reduce the overall construction costs by its compatibility with the conventional railway systems. Therefore, the design and characteristic analysis of a coreless-type superconducting Linear Synchronous Motor (LSM) for 600km/h very high speed railway system are conducted in this paper. The designed coreless-type superconducting LSMs are the distributed winding model, the concentrated 1 layer winding model and the concentrated 2 layer winding model, respectively. In addition, the characteristic comparison studies on each LSM are conducted.