• Title/Summary/Keyword: wetting index

Search Result 32, Processing Time 0.03 seconds

Effective Screening of Antagonist for the Biological Control of Soilborne Infectious Disease (Damping-Off)

  • LEE BAEK-SEOK;LEE HYANG-BOK;CHOI SUNG-WON;YUN HYUN-SHIK;KIM EUN-KI
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.701-709
    • /
    • 2005
  • An efficient method of selecting an antagonistic strain for use as a biological control agent strain was developed. In this improved method, the surface tension reduction potential of an isolate was included in the 'decision factor,' in addition to two other factors; the growth rate and pathogen inhibition. By using a statistically designed method, an isolate from the soil was selected and identified as Bacillus sp. GB 16. In the pot test, this strain showed the best performance among the isolated strains. The lowest disease incidence rate and fastest seed growth were observed when the Bacillus sp. GB 16 was used. The action of the surface tension reducing component was assumed to enhance the wetting, spreading, and residing of the antagonistic strain in the rhizosphere. This result showed that the improved selection method was quite effective in selecting the best antagonistic strain for the biological control of soilborne infectious plant pathogens.

Analyzing Friction Coefficient and Wettability of Micro-Dimple Fabricated Using Elliptical Vibration Texturing Method (이중 주파수 타원형 진동 궤적법 기반 마이크로 딤플의 마찰계수 및 습윤성 분석)

  • Park, Gun Chul;Ko, Tae Jo;Kurniawan, Rendi;Ali, Saood
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.38-44
    • /
    • 2020
  • Surface texturing of micro-dimples has been used in many manufacturing industries to reduce friction between two sliding contacted surfaces. Surface texturing decreases the frictional force owing to minimizing of the sliding contact area. In this paper, micro-dimples have been fabricated on an Al6061-T6 surface using a two-frequency elliptical vibration texturing (TFEVT) method. A high-frequency of 18 kHz and low-frequency of 250 Hz were applied to an elliptically-vibrated tool holder. The Stribeck curve was plotted to analyze the friction coefficient trends. Furthermore, the representative wetting index, such as the water contact angle (WCA), was measured by considering the friction coefficient. WCA is associated with micro-dimple density and associated parameters. Consequently, the dimpled surfaces with a low friction coefficient exhibited a relatively high WCA in the feed direction. According to the Stribeck curve, the dimpled surfaces demonstrate superior friction performance for mixed-film lubrication compared to the non-textured surface.

An assessment of the mechanical behavior of zeolite tuff used in permeable reactive barriers

  • Cevikbilen, Gokhan
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.305-318
    • /
    • 2022
  • Permeable reactive barriers used for groundwater treatment require proper estimation of the reactive material behavior regarding the emplacement method. This study evaluates the dry emplacement of zeolite (clinoptilolite) to be used as a reactive material in the barrier by carrying out several geotechnical laboratory tests. Dry zeolite samples, exhibited higher wetting-induced compression strains at the higher vertical stresses, up to 12% at 400 kN/m2. The swelling potential was observed to be limited with a 3.5 swell index and less than 1% free swelling strain. Direct shear tests revealed that inundation reduces the shear strength of a dry zeolite column by a maximum of 10%. Falling head permeability tests indicate decreasing permeability values with increasing the vertical effective stress. Regarding self-loading and inundation, the porosity along the zeolite column was calculated using a proposed 1D numerical model to predict the permeability with depth considering the laboratory tests. The calculated discharge efficiency was significantly decreased with depth and less than 2% relative to the top for barrier depths deeper than 20 m. Finally, the importance of directional dependence in the permeability of the zeolite medium for calibrating 2D finite element flow analysis was highlighted by bench-scale tests performed under 2D flow conditions.

Preparation and Curing Behavior of Polyurethane Coatings by Polyester/Lactone Polyol and HDI-biuret (폴리에스테르/락톤 폴리올과 HDI-Biuret에 의한 폴리우레탄 도료의 제조 및 경화거동)

  • 최용호;김대원;황규현;박홍수;김태옥
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.72-81
    • /
    • 2000
  • Benzoic acid polyester/lactone polyol were synthesized by polycaprolactone 0201 as diol, trimethylolpropane as triol, adipic acid as dibasic acid, and benzoic acid as monobasic acid. Polyisocyanate prepolymer Desmodur N-100 of HDI-biuret type was used in this study. Two-component polyurethane coatings were prepared by blending benzoic acid polyester/polycaprolactone, polyisocyanate, wetting/dispersing agent, white pigment, and flowing agent. Various properties were examined on the film coated with the prepared polyurethane. They showed excellent physical properties such as abrasion resistance, accelerated weathering resistance, and yellowness index. They also showed good physical properties such as flexibility, impact resistance, 60$^{\circ}$ specular gloss, cross hatch adhesion, hydrocarbon resistance, and lightness index difference. Hardness of coating showed a little poor character. The introduction of polycaprolactone 0201 as diol in the polyurethane coatings improved the hydrocarbon resistance, impact resistance, and flexibility of coatings. According to the drying and curing behavior with the contents of benzoic acid, they seem to have reasonable coating properties such as drying time of 2 to 4 hours and pot-life time of 20 to 37 hours.

  • PDF

An Assessment of the Potential Area of Mountainous Wetland Using AHP (AHP를 이용한 산지습지 가능지역 평가)

  • Moon, Sang Kyun;Koo, Bonhak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.27-43
    • /
    • 2014
  • The purpose of this research is to assess potential area of mountainous wetland by GIS and AHP (Analytic Hierarchy Process). Mountainous wetland is topographically located at high altitude, so it's difficult to approach for researchers. And, it's difficult to investigate systematically because of the insufficient information of mountainous wetland. Therefore, it's necessary to study on potential area of mountainous wetland for systematic and efficient investigation. This research selected slope, wetting index, land-cover map and soil map as assessment items indicating environmental characteristics of mountainous wetland and established them by GIS DB. And, spatial value of mountainous wetland for each assessment item was drawn by existing investigation data and overlap analysis of mountainous wetland. Based on the numerical results of each assessment item, a survey was conducted and relative importance for each assessment item was decided by AHP. As the result, slope was the highest as 0.550 and ground coverage was the lowest as 0.083. The subject of this research was Yangsan-si and Ulsan of Gyeongnam and an analysis was conducted for mountainous wetland in those research areas. As the result, all of wetland was distributed in the range of potential area. And, field survey and literature search were conducted for the point that the distribution of mountainous wetland is expected. As the result, mountainous wetland was distributed. Therefore, mountainous wetland should be excavated through the results of this research and it should be helpful for effective investigation as providing information necessary to the following studies on mountainous wetland.

Influence of Wetting Agents on Physical Properties of Soft Contact Lens (친수성 소프트 콘택트렌즈의 물리적 특성에 미치는 습윤성 재료의 영향)

  • Lee, Min-Jae;Sung, A-Young;Kim, Tae-Hun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.1
    • /
    • pp.43-49
    • /
    • 2014
  • Purpose: The physical and optical characteristics of hydrophilic contact lens polymerized with addition of glycerin and PVP(polyvinylpyrrolidone) in the basic hydrogel contact lens material were evaluated. Methods: This study used glycerin and PVP(polyvinylpyrrolidone) with the cross-linker EGDMA (ethylene glycol dimethacrylate), HEMA (2-hydroxyethyl methacrylate) and the initiator AIBN (azobisisobutyronitrile) for copolymerization. Results: Measurements of the physical characteristics of the copolymerized material including PVP(polyvinylpyrrolidone) showed the refractive index of 1.4382~1.4288, tensile strength of 0.3446~2542 kgf and water content and contact angle of sample showed the increase of 13.49% and decrease of 21.44% independently. And also, the physical characteristics of the copolymerized material including glycerin showed the refractive index of 1.4330~1.4328, tensile strength of 0.2974~0.2854 kgf, water content 35.58~36.53% and contact angle of sample showed the decrease of 37.64%. Conclusions: Based on the results of this study, the produced copolymers is suitable for conventional lens with high wettability. Also, glycerin minimized the changes of water content and refractive index at the same time, increased the wettability of the hydrogel lens materials.

Behaviour of micropiles in collapsible loess under tension or compression load

  • Qian, Zeng-Zhen;Lu, Xian-Long;Yang, Wen-Zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.477-493
    • /
    • 2014
  • This study examines the behaviour of single micropiles subjected to axial tension or compression load in collapsible loess under in-situ moisture content and saturated condition. Five tension loading tests and five compression loading tests on single micropiles were carried out at a typical loess site of the Loess Plateau in Northwest China. A series of laboratory tests, including grain size distribution, specific gravity, moisture content, Atterberg limits, density, granular components, shear strength, and collapse index, were carried out during the micropile loading tests to determine the values of soil parameters. The loess at the test site poses a severe collapse risk upon wetting. The tension or compression load-displacement curves of the micropiles in loess, under in-situ moisture content or saturated condition, can generally be simplified into three distinct regions: an initial linear, a curvilinear transition, and a final linear region, and the bearing capacity or failure load can be interpreted by the L1-L2 method as done in other studies. Micropiles in loess should be considered as frictional pile foundations though the tip resistances are about 10%-15% of the applied loads. Both the tension and compression capacities increase linearly with the ratio of the pile length to the shaft diameter, L/d. For micropiles in loess under in-situ moisture content, the interpreted failure loads or capacities under tension are 66%-87% of those under compression. However, the prewetting of the loess can lead to the reductions of 50% in the tensile bearing capacity and 70% in the compressive bearing capacity.

Alkaline induced-cation crosslinking biopolymer soil treatment and field implementation for slope surface protection

  • Minhyeong Lee;Ilhan Chang;Seok-Jun Kang;Dong-Hyuk Lee;Gye-Chun Cho
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.29-40
    • /
    • 2023
  • Xanthan gum and starch compound biopolymer (XS), an environmentally friendly soil-binding material produced from natural resources, has been suggested as a slope protection material to enhance soil strength and erosion resistance. Insufficient wet strength and the consequent durability concerns remain, despite XS biopolymer-soil treatment showing high strength and erosion resistance in the dried state, even with a small dosage of soil mass. These concerns need to be solved to improve the field applicability and post-stability of this treatment. This study explored the utilization of an alkaline-based cation crosslinking method using calcium hydroxide and sodium hydroxide to induce non-thermal gelation, resulting in the enhancement of the wet strength and durability of biopolymer-treated soil. Laboratory experiments were conducted to assess the unconfined compressive strength and cyclic wetting-drying durability performance of the treated soil using a selected recipe based on a preliminary gel formation test. The results demonstrated that the uniformity of the gel structure and gelling time varied depending on the ratio of crosslinkers to biopolymer; consequently, the strength of the soil was affected. Subsequently, site soil treated with the recipe, which showed the best performance in indoor assessment, was implemented on the field slope at the bridge abutment via compaction and pressurized spraying methods to assess feasibility in field implementation. Moreover, the variation in surface soil hardness was monitored periodically for one year. Both slopes implemented by the two construction methods showed sufficient stability against detachment and scouring, with a higher soil hardness index than the natural slope for a year.

A Study on Durability Test of Cemented Soils (시멘트 혼합토의 내구성 평가법에 관한 연구)

  • Park, Sung-Sik;Hwang, Se-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.11
    • /
    • pp.79-86
    • /
    • 2012
  • Cemented soils have been used for subbase or base materials of roads, backfill materials of retaining walls and cofferdam. Such cemented soils can be degraded due to repeated wetting and drying or various weathering actions. Unlike rocks, a standard method was not defined for evaluating the durability of cemented soils. In this study, a slaking durability test and an ultrasound cleaner were used for developing a new durability test method for cemented soils. For durability tests, cemented sands with different cement ratios (4, 6, 8, and 12%) with cylindrical specimens were prepared and then air cured or under-water cured for three days. Three-day-cured specimens were dried for one day and then submerged for one day before testing. The weight loss after the slake durability test or ultrasonic cleaner operation for 10 or 20 min was measured and used for assessing durability. When a cement ratio was 4%, the weight loss from ultrasonic cleaner test was 7-25% but that from slake durability test was as much as 30-60%. For specimens with cement ratio of more than 8%, the weight loss was less than 10% from both tests. A durability index increased with increasing a cement ratio. The durability index of under-water cured specimen was higher than that of air cured specimen. The ultrasonic cleaner test was found to be an effective tool for durability assessment of cemented sands rather than the slake durability test.

Effects of Soil Aggregate Stability and Wettability on Soil Loss (토양입단(土壤粒團)의 안정성(安定性)과 친수성(親水性)이 토양유실(土壤流失)에 미치는 영향(影響))

  • Jo, In-Sang;Cho, Seong-Jin;De Boodt, M.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.4
    • /
    • pp.373-377
    • /
    • 1985
  • This experiment was designed to find out the soil properties to control the soil erodibility. Two kinds of soil conditioners, hydrophilic Uresol and hydrophobic Bitumen were treated to sandy loam and silt loam. Soil erodibility was tested during a simulated rainfall in a soil pan which was covered with a 2cm layer of treated and untreated aggregates (< 5.36mm) on a soil layer. The runoff starting time was delayed 8-20 minutes by Uresol treatment and it was hasten 1-21 minutes by Bitumen treatment. Runoff rates were reduced by Uresol to 62.5% in sandy loam and 93.7% in silt loam, but it was increased by Bitumen treatment. Erosion from the Uresol treated soil was remarkably reduced to 1.7-23.6% of that in the untreated soil. In case of the Bitumen treatment, the soil loss from silt loam was reduced to 55.5% of the control, but it was increased in sandy loam soil by 52% over the control. The ratio of soil loss and runoff, sediment concentration in runoff, was noticeably increased when the soil structure was unstable. There was significant correlation between soil loss and logarithm of wetting angle-stability index. Soil loss was greatly increased when the index was less than 0.2.

  • PDF