Browse > Article
http://dx.doi.org/10.12989/gae.2022.31.3.305

An assessment of the mechanical behavior of zeolite tuff used in permeable reactive barriers  

Cevikbilen, Gokhan (Department of Civil Engineering, Istanbul Technical University, ITU Ayazaga Campus, Faculty of Civil Engineering)
Publication Information
Geomechanics and Engineering / v.31, no.3, 2022 , pp. 305-318 More about this Journal
Abstract
Permeable reactive barriers used for groundwater treatment require proper estimation of the reactive material behavior regarding the emplacement method. This study evaluates the dry emplacement of zeolite (clinoptilolite) to be used as a reactive material in the barrier by carrying out several geotechnical laboratory tests. Dry zeolite samples, exhibited higher wetting-induced compression strains at the higher vertical stresses, up to 12% at 400 kN/m2. The swelling potential was observed to be limited with a 3.5 swell index and less than 1% free swelling strain. Direct shear tests revealed that inundation reduces the shear strength of a dry zeolite column by a maximum of 10%. Falling head permeability tests indicate decreasing permeability values with increasing the vertical effective stress. Regarding self-loading and inundation, the porosity along the zeolite column was calculated using a proposed 1D numerical model to predict the permeability with depth considering the laboratory tests. The calculated discharge efficiency was significantly decreased with depth and less than 2% relative to the top for barrier depths deeper than 20 m. Finally, the importance of directional dependence in the permeability of the zeolite medium for calibrating 2D finite element flow analysis was highlighted by bench-scale tests performed under 2D flow conditions.
Keywords
clinoptilolite; hydro-compression; permeability; permeable reactive barrier; shear strength; zeolite;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Di Emidio, G., Flores, RDV, Scipioni, C, Fratalocchi, E, Bezuijen, A. (2015) "Hydraulic and mechanical behaviour of cement-bentonite mixtures containing HYPER clay: impact of sulfate attack", Proceedings of the 6th Int. Symp. on Deformation Characteristics of Geomaterials", Buenos Aires, Argentina, November.
2 Gavaskar, A.R. (1999), "Design and construction techniques for permeable reactive barriers", J. Hazardous Mater., 68(1-2), 41-71. https://doi.org/10.1016/S0304-3894(99)00031-X.   DOI
3 Gueddouda, M.K., Lamara, M., Abou-bekr, N. and Taibi, S. (2010), "Hydraulic behavior of dune sand-bentonite mixtures under confining stress", Geomech. Eng., 2(3), 213-227, https://doi.org/10.12989/gae.2010.2.3.213.   DOI
4 Henderson A.D. and Demond A.H. (2007), "Long-term performance of zero-valent iron permeable reactive barriers: A critical review", Environ. Eng. Sci., 24(4). https://doi.org/10.1089/ees.2006.0071.   DOI
5 Park, J.B., Lee, S.H., Lee, J.W. and Lee, C.Y. (2002), "Lab scale experiments for permeable reactive barriers against contaminated groundwater with ammonium and heavy metals using clinoptilolite (01-29B)", J. Hazardous Mater., 95(1-2), 65-79. https://doi.org/10.1016/S0304-3894(02)00007-9.   DOI
6 Powell, R.M., Puls, R.W., Blowes, D.W., Vogan, J.L., Gillham, R. W., Powell, P.D., Schultz, D. Landis, R. and Sivavec, T. (1998), "Permeable reactive barrier technologies for contaminant remediation", U.S. Environ. Protection Agency, Washington, D.C., EPA/600/R-98/125 (NTIS 99-105702).
7 Rajapakse, J.P., Gallage, C., Dareeju, B., Madabhushi, G. and Fenner, R. (2015), "Strength properties of composite clay balls containing additives from industry wastes as new filter media in water treatment", Geomech. Eng., 8(6), 859-872. https://doi.org/10.12989/gae.2015.8.6.859.   DOI
8 Smith, W.H.F. and Sandwell, D.T. (1997a), "Measured and estimated seafloor topography (version 4.2) ", World Data Centre-A for Marine Geology and Geophysics research publication RP-1, poster, 34" × 53".
9 Smith, W.H.F. and Sandwell, D.T. (1997b), "Global seafloor topography from satellite altimetry and ship depth soundings", Science, 277, 1957-1962.
10 Smyth, D. (1995), University of Waterloo Research Efforts, Remediation Technologies Development Forum, Permeable Barriers Work Group, Meeting Summary, Wilmington, Delaware USA, May.
11 Thiruvenkatachari, R., Vigneswaran, S. and Naidu, R. (2008), "Permeable reactive barrier for groundwater remediation", J. Ind. Eng. Chem., 14(2), 145-156. https://doi.org/10.1016/j.jiec.2007.10.001.   DOI
12 Tuncan, A., Tuncan, M., Koyuncu, H. and Guney, Y. (2003), "Use of natural zeolites as a landfill liner", Waste Mgmt. Res.: The J. for a Sust. Circ. Econ., 21(1), 54-61. https://doi.org/10.1177/0734242X0302100107.   DOI
13 Cevikbilen, G. and Camtakan, Z. (2020), "Bench-scale studies of a permeable reactive barrier system for radiocesium removal", European Geoscience Union General Assembly, Online, May.
14 ASTM D2434 (2019), Standard Test Method for Permeability of Granular Soils (Constant Head), ASTM Int., West Conshohocken, PA, 2019, USA.
15 ASTM D2435 (2020), Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading, ASTM Int., West Conshohocken, PA, USA.
16 ASTM D4254 (2016), Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density, ASTM Int., West Conshohocken, PA, USA.
17 ASTM D6913 (2017), Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis, ASTM Int., West Conshohocken, PA, USA.
18 Bone, B.D. (2012), "Review of UK guidance on permeable reactive barriers", Peoceedings of the Taipei Int. Conf. on Remediation and Mgmt. of Soil and Groundwater Contaminated Sites, Taipei, Taiwan, October.
19 Ghiyas, S.M.R. and Bagheripour, M.H. (2020) "Stabilization of oily contaminated clay soils using new materials: Micro and macro structural investigation", Geomech. Eng., 20(3) 207-220. https://doi.org/10.12989/gae.2020.20.3.207.   DOI
20 IAEA-TECDOC-1088 (1999), Technical Options for the Remediation of Contaminated Groundwater, Int. At. Energy Agency, Vienna, Austria. https://www.pub.iaea.org/MTCD/publications/PDF/te_1088_prn.pdf.
21 Kayabali, K. and Kezer, H. (1998), "Testing the ability of bentonite amended zeolite (clinoptilolite) to remove heavy metals from liquids waste", Env. Geology, 34, 95-102. https://doi.org/10.1007/s002540050259.   DOI
22 ASTM D5890 (2019), Standard Test Method for Swell Index of Clay Mineral Component of Geosynthetic Clay Liners, ASTM Int., West Conshohocken, PA, USA.
23 Aksoy Y.Y. (2010), "Characterization of two natural zeolites for geotechnical and geoenvironmental applications", App. Clay Sci., 50(1), 130-136. https://doi.org/10.1016/j.clay.2010.07.015.   DOI
24 ASTM D854 (2014), Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM Int., West Conshohocken, PA, USA.
25 ASTM D7928 (2021), Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis, ASTM Int., West Conshohocken, PA, USA.
26 ASTM D2487 (2017), Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM Int., West Conshohocken, PA, USA.
27 ASTM D3080 (2011), Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, ASTM Int., West Conshohocken, PA, USA.
28 ASTM D4253 (2016), Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table, ASTM Int., West Conshohocken, PA, USA.
29 ASTM D4546 (2021), Standard Test Methods for One-Dimensional Swell or Collapse of Soils, ASTM Int., West Conshohocken, PA, 2021, USA.
30 Bagherifam, S., Brown, TC., Fellows, CM. Naidu, R. and Komarneni, S. (2021), "Highly efficient removal of antimonite (Sb (III)) from aqueous solutions by organoclay and organozeolite: Kinetics and Isotherms", App. Clay Sci., 203. https://doi.org/10.1016/j.clay.2021.106004 .   DOI
31 Bowles M.W., Bentley L.R., Hoyne B. and Thomas D.A. (2000), "In situ ground water remediation using the trench and gate system", Ground Water, 38(2) 172-181. https://doi.org/10.1111/j.1745-6584.2000.tb00328.x.   DOI
32 ITRC (2005), Permeable reactive barriers: Lessons learned/new directions. PRB-4. Interstate Technology & Regulatory Council, Permeable Reactive Barriers Team. Washington, D.C. www.itrcweb.org.
33 Joseph A.S. and Varghese M. (2017), "Study on amended landfill liner using bentonite and zeolite mixtures", Int. Res. J. of Eng. Tech., 4(4), 1130-1133. https://www.irjet.net/archives/V4/i4/IRJET-V4I4232.pdf .
34 Korte, N.E. (2001), "Zero-Valent Iron Permeable Reactive Barriers: A Review of Performance. United States" Environ. Sciences Division Pub. No. 5056, U.S. Department of Energy, Washington DC. https://doi.org/10.2172/814389.   DOI
35 Kutuk, A.C., Yuksel, M., Sozudogru, S., Omer, F. Kayabah, I. (1996), "Gordes zeolitli (klinoptilolit) tuflerinin mineralojisi ve bitki yetistirme ortaminda kullanimi", Jeoloji Muhendisligi 48, 32-39.
36 Ludwig, R.D., McGregor, R.G., Blowes, D.W., Benner, S.G. and Mountjoy, K. (2005), "A permeable reactive barrier for treatment of heavy metals", Ground Water 40(1), 59-66. https://doi.org/10.1111/j.1745-6584.2002.tb02491.x.   DOI
37 Mesri, G. (1973), "Coefficient of secondary compression", ASCE J. Soil Mech. Found. Div., 99(1), 123-137. https://doi.org/10.1061/JSFEAQ.0001840.   DOI
38 Villalobos, F.A., Leiva, E.A., Jerez, O. and Poblete, M.E. (2018), "Experimental study of the fine particles effect on the shear strength of tuff zeolites", J. Const., 17(1), 23-37. https://doi.org/10.7764/RDLC.17.1.23.   DOI
39 Morrison, S.J., Naftz, D.L., Davis, J.A. and Fuller, C.C. (2003), "Chapter 1 - introduction to groundwater remediation of metals, radionuclides, and nutrients with permeable reactive barriers", (Eds., David L. Naftz, Stan J. Morrison, Christopher C. Morrison S.J., Naftz D.L., Davis J.A., Fuller C.C.), Handbook of Groundwater Remediation using Permeable Reactive Barriers, Academic Press, 1-15.
40 MTA (2021), Zeolite resources in Turkey; MTA, Ankara, Turkey. www.mta.gov.tr/v3.0/sayfalar/hizmetler/images/b_h/ zeolit.jpg.
41 Vignola, R., Bagatina, R., D'Auris, A.F., Flego, C., Nalli, M., Ghisletti, D., Millini, R. and Sisto, R. (2011), "Zeolites in a permeable reactive barrier (PRB): One year of field experience in a refinery groundwater-Part 1: The performances", Chem. Eng. J., 178, 204-209. https://doi.org/10.1016/j.cej.2011.10.050.   DOI
42 Walker, K.L. Jr., McGuire, T.M., Adamson, D.T. and Anderson, R. H. (2020), "Long-term evaluation of mulch biowall performance to treat chlorinated solvents", Groundwater Monit. Remediation, 40(1), 35-46. https://doi.org/10.1111/gwmr.12364.   DOI
43 Wang, C.B. and Zhang, W.X. (1997), "Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs", Environ. Sci. Technol., 31(7) 2154-2156. https://doi.org/10.1021/es970039c.   DOI
44 Wessel, P. and Smith, W.H.F. (1998), "New, improved version of the Generic Mapping Tools released", EOS Trans. Am. Geophys. Union 7.
45 Navarro, A., Chimenos, J.M., Muntaner, D. and Fernandez, A.I. (2006), "Permeable reactive barriers for the removal of heavy metals: Lab-scale experiments with low-grade magnesium oxide", Groundwater Monit. Remediation, 26(4), 142-152. https://doi.org/10.1111/j.1745-6592.2006.00118.x.   DOI
46 Widomski, M.K., Musz-Pomorska, A. and Franus, W. (2021), "Hydraulic and swell-shrink characteristics of clay and recycled zeolite mixtures for liner construction in sustainable waste landfill", Sustainability, 13(13), 7301. 1-20. https://doi.org/10.3390/su13137301.   DOI
47 USEPA (2002), "Field applications of in-situ remediation technologies: Permeable reactive barriers", Office of Solid Waste and Emergency Response Technology Innovation Office, Washington, DC.
48 Naidu, R. and Birke, V. (2015), Permeable Reactive Barrier: Sustainable Groundwater Remediation, CRC Press Taylor & Francis Group, Boca Raton, FL, USA.
49 Oren, A.H. and Kaya, A. (2014) "Compaction and volumetric shrinkage of bentonitic mixtures", Proc. of the Inst. of Civil Eng. Geot. Eng., 167(1), 51-61. https://doi.org/10.1680/geng.11.00043.   DOI
50 Oren, A.H., Kaya, A. and Kayalar, A.S. (2011), "Hydraulic conductivity of zeolite-bentonite mixtures in comparison with sand-bentonite mixtures", Canadian Geot. J., 48(9), 1343-1353. https://doi.org/10.1139/t11-042.   DOI
51 Oren, A.H. and Ozdamar, T. (2013), "Hydraulic conductivity of compacted zeolites", Waste Mgmt. Res., 31(6), 634-640. https://doi.org/10.1177/0734242X13479434.   DOI
52 Camtakan, Z. (2021), "Investigation of the treatment of cesium in waste storage areas with the permeable reactive barrier (PRB) system", Ph.D. Dissertation, Ege University, Izmir.