• Title/Summary/Keyword: well-posed

Search Result 143, Processing Time 0.024 seconds

A Study on the Optimization Problem Solving utilizing the Quadratic Curve using the Dynamic Geometry Software (동적기하프로그램을 활용한 이차곡선 최적화 문제해결에 관한 연구)

  • Kim, Jung Soo;Jeon, Bo Hyun;Chung, Young Woo;Kim, Boo Yoon;Lee, Yan
    • East Asian mathematical journal
    • /
    • v.30 no.2
    • /
    • pp.149-172
    • /
    • 2014
  • The problems of optimization addressed in the high school curriculum are usually posed in real-life contexts. However, because of the instructional purposes, problems are artificially constructed to suit computation, rather than to reflect real-life problems. Those problems have thus limited use for teaching 'practicalities', which is one of the goals of mathematics education. This study, by utilizing 'GeoGebra', suggests the optimization problem solving related to the quadratic curve, using the contour-line method which contemplates the quadratic curve changes successively. By considering more realistic situations to supplement the limit which deals only with numerical and algebraic approach, this attempt will help students to be aware of the usefulness of mathematics, and to develop interests in mathematics, as well as foster students' integrated thinking abilities across units. And this allows students to experience a variety of math.

Long-standing chin-augmenting costochondral graft creating a diagnostic challenge: A case report and literature review

  • Badr, Fatma Fayez;Mintline, Mark;Ruprecht, Axel;Cohen, Donald;Blumberg, Barton R.;Nair, Madhu K.
    • Imaging Science in Dentistry
    • /
    • v.46 no.4
    • /
    • pp.279-284
    • /
    • 2016
  • To our knowledge, the imaging features of costochondral grafts (CCGs) on cone-beam computed tomography (CBCT) have not been documented in the literature. We present the case of a CCG in the facial soft tissue to the anterior mandible, with changes mimicking a cartilaginous neoplasm. This is the first report to describe the CBCT imaging features of a long-standing graft in the anterior mandible. Implants or grafts may be incidental findings on radiographic images made for unrelated purposes. Although most are well-defined and radiographically homogeneous, being of relatively inert non-biological material, immune reactions to some grafts may stimulate alterations in the appearance of surrounding tissues. Biological implants may undergo growth and differentiation, causing their appearance to mimic neoplastic lesions. We present the case of a cosmetic autogenous CCG that posed a diagnostic challenge both radiographically and histopathologically.

Scalable P2P Botnet Detection with Threshold Setting in Hadoop Framework (하둡 프레임워크에서 한계점 가변으로 확장성이 가능한 P2P 봇넷 탐지 기법)

  • Huseynov, Khalid;Yoo, Paul D.;Kim, Kwangjo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.4
    • /
    • pp.807-816
    • /
    • 2015
  • During the last decade most of coordinated security breaches are performed by the means of botnets, which is a large overlay network of compromised computers being controlled by remote botmaster. Due to high volumes of traffic to be analyzed, the challenge is posed by managing tradeoff between system scalability and accuracy. We propose a novel Hadoop-based P2P botnet detection method solving the problem of scalability and having high accuracy. Moreover, our approach is characterized not to require labeled data and applicable to encrypted traffic as well.

A Validation Method for Solution of Nonlinear Differential Equations: Construction of Exact Solutions Neighboring Approximate Solutions

  • Lee, Sang-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.46-58
    • /
    • 2002
  • An inverse method is introduced to construct benchmark problems for the numerical solution of initial value problems. Benchmark problems constructed through this method have a known exact solution, even though analytical solutions are generally not obtainable. The solution is constructed such that it lies near a given approximate numerical solution, and therefore the special case solution can be generated in a versatile and physically meaningful fashion and can serve as a benchmark problem to validate approximate solution methods. A smooth interpolation of the approximate solution is forced to exactly satisfy the differential equation by analytically deriving a small forcing function to absorb all of the errors in the interpolated approximate solution. A multi-variable orthogonal function expansion method and computer symbol manipulation are successfully used for this process. Using this special case exact solution, it is possible to directly investigate the relationship between global errors of a candidate numerical solution process and the associated tuning parameters for a given code and a given problem. Under the assumption that the original differential equation is well-posed with respect to the small perturbations, we thereby obtain valuable information about the optimal choice of the tuning parameters and the achievable accuracy of the numerical solution. Illustrative examples show the utility of this method not only for the ordinary differential equations (ODEs) but for the partial differential equations (PDEs).

Numerical and experimental investigation for damage detection in FRP composite plates using support vector machine algorithm

  • Shyamala, Prashanth;Mondal, Subhajit;Chakraborty, Sushanta
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.243-260
    • /
    • 2018
  • Detection of damages in fibre reinforced plastic (FRP) composite structures is important from the safety and serviceability point of view. Usually, damage is realized as a local reduction of stiffness and if dynamic responses of the structure are sensitive enough to such changes in stiffness, then a well posed inverse problem can provide an efficient solution to the damage detection problem. Usually, such inverse problems are solved within the framework of pattern recognition. Support Vector Machine (SVM) Algorithm is one such methodology, which minimizes the weighted differences between the experimentally observed dynamic responses and those computed using the finite element model- by optimizing appropriately chosen parameters, such as stiffness. A damage detection strategy is hereby proposed using SVM which perform stepwise by first locating and then determining the severity of the damage. The SVM algorithm uses simulations of only a limited number of damage scenarios and trains the algorithm in such a way so as to detect damages at unknown locations by recognizing the pattern of changes in dynamic responses. A rectangular fiber reinforced plastic composite plate has been investigated both numerically and experimentally to observe the efficiency of the SVM algorithm for damage detection. Experimentally determined modal responses, such as natural frequencies and mode shapes are used as observable parameters. The results are encouraging since a high percentage of damage cases have been successfully determined using the proposed algorithm.

ON THE M-SOLUTION OF THE FIRST KIND EQUATIONS

  • Rim, Dong-Il;Yun, Jae-Heon;Lee, Seok-Jong
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.235-249
    • /
    • 1995
  • Let K be a bounded linear operator from Hilbert space $H_1$ into Hilbert space $H_2$. When numerically solving the first kind equation Kf = g, one usually picks n orthonormal functions $\phi_1, \phi_2,...,\phi_n$ in $H_1$ which depend on the numerical method and on the problem, see Varah [12] for more details. Then one findes the unique minimum norm element $f_M \in M$ that satisfies $\Vert K f_M - g \Vert = inf {\Vert K f - g \Vert : f \in M}$, where M is the linear span of $\phi_1, \phi_2,...,\phi_n$. Such a solution $f_M \in M$ is called the M-solution of K f = g. Some methods for finding the M-solution of K f = g were proposed by Banks [2] and Marti [9,10]. See [5,6,8] for convergence results comparing the M-solution of K f = g with $f_0$, the least squares solution of minimum norm (LSSMN) of K f = g.

  • PDF

Optimal Infection Time and Medium Composition for the Production of Recombinant Protein in Insect Cell-Baculovirus System (곤충세포-배큘로바이러스 시스템에서 재조합 단백질 생산을 위한 최적 감염시기 및 배지조성)

  • 하성호;이성환박태현
    • KSBB Journal
    • /
    • v.10 no.3
    • /
    • pp.317-322
    • /
    • 1995
  • Insect cells were grown and infected with baculovirus for the production of recombinant protein. Later infection gave the lower expression of recombinant protein. This indicates that the expression rate is lower at higher cell concentration. This phenomena provides a well-posed optimization problem with respect to the infection time. The optimal infection time was experimentally shown to exist for the maximum productivity of recombinant protein. Also, the expression increased with the addition of 5% silkworm hemolymph. This is considered to be due to the increase of intracellular viruses and the longevity of viable cells after the infection. The production of ${\beta}$-galaclosidase increased about ten-fold with the addition of yeastolate and silkworm hemolymph for high cell density and high expression, respectively.

  • PDF

A Study on a Single-Phase Module UPS using a Three-Arm Converter/Inverter

  • Koo, Tae-Geun;Byun, Young-Bok;Joe, Ki-Yeon;Kim, Dong-Hee;Kim, Chul-U
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.44-51
    • /
    • 2003
  • The module UPS can flexibly implement expansion of power system capacities. Further-more, it can be used to build up the parallel redundant system to improve the reliability of power system operation. To realize the module UPS, load sharing without interconnection among parallel connecting modules as well as a small scale and lightweight topology is necessary. In this paper, the three-arm converter/inverter is compared with the general full-bridge and half-bridge topology from a practical point of view and chosen as the module UPS topology. The switching control approaches based on a pulse width modulation of the converter and inverter of the system are presented independently. The frequency and voltage droop method is applied to parallel operation control to achieve load sharing. Two prototype 3㎸A modules are designed and implemented to confirm the effectiveness of the pro-posed approaches. Experimental results show that the three-arm UPS system has a high power factor, a low distortion of output voltage and input current, and good load sharing characteristics.

Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement

  • Li, Shunlong;Wang, Xin;Liu, Hongzhan;Zhuo, Yi;Su, Wei;Di, Hao
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.591-603
    • /
    • 2020
  • Dynamic deflection monitoring is an essential and critical part of structural health monitoring for high-speed railway bridges. Two critical problems need to be addressed when using inclinometer sensors for such applications. These include constructing a general representation model of inclination-deflection and addressing the ill-posed inverse problem to obtain the accurate dynamic deflection. This paper provides a dynamic deflection monitoring method with the placement of optimal inclinometer sensors for high-speed railway bridges. The deflection shapes are reconstructed using the inclination-deflection transformation model based on the differential relationship between the inclination and displacement mode shape matrix. The proposed optimal sensor configuration can be used to select inclination-deflection transformation models that meet the required accuracy and stability from all possible sensor locations. In this study, the condition number and information entropy are employed to measure the ill-condition of the selected mode shape matrix and evaluate the prediction performance of different sensor configurations. The particle swarm optimization algorithm, genetic algorithm, and artificial fish swarm algorithm are used to optimize the sensor position placement. Numerical simulation and experimental validation results of a 5-span high-speed railway bridge show that the reconstructed deflection shapes agree well with those of the real bridge.

ILL-VERSUS WELL-POSED SINGULAR LINEAR SYSTEMS: SCOPE OF RANDOMIZED ALGORITHMS

  • Sen, S.K.;Agarwal, Ravi P.;Shaykhian, Gholam Ali
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.621-638
    • /
    • 2009
  • The linear system Ax = b will have (i) no solution, (ii) only one non-trivial (trivial) solution, or (iii) infinity of solutions. Our focus will be on cases (ii) and (iii). The mathematical models of many real-world problems give rise to (a) ill-conditioned linear systems, (b) singular linear systems (A is singular with all its linearly independent rows are sufficiently linearly independent), or (c) ill-conditioned singular linear systems (A is singular with some or all of its strictly linearly independent rows are near-linearly dependent). This article highlights the scope and need of a randomized algorithm for ill-conditioned/singular systems when a reasonably narrow domain of a solution vector is specified. Further, it stresses that with the increasing computing power, the importance of randomized algorithms is also increasing. It also points out that, for many optimization linear/nonlinear problems, randomized algorithms are increasingly dominating the deterministic approaches and, for some problems such as the traveling salesman problem, randomized algorithms are the only alternatives.

  • PDF