• 제목/요약/키워드: weighted least squares

검색결과 145건 처리시간 0.03초

스포트라이트 모드 SAR 영상 형성에서의 수정된 가중치 최소 자승기법에 의한 자동 초점 알고리즘 (Modified WLS Autofocus Algorithm for a Spotlight Mode SAR Image Formation)

  • 황정훈;신현익;김환우
    • 한국전자파학회논문지
    • /
    • 제28권11호
    • /
    • pp.894-901
    • /
    • 2017
  • 요동이 존재하는 환경에서 항법 장비 정확도의 한계 및 시스템 지연 오차 등으로 방위 위상 오차가 필연적으로 발생하는 항공기 탑재 SAR(Synthetic Aperture Radar)의 경우, 방위 위상 오차를 신호처리 알고리즘으로 추정하고 보상하는 자동 초점(Autofocus: AF) 기법 적용이 필수적이다. 본 논문에서는 수정된 가중치 최소 자승기법(Modified Weighted Least-Squares: MWLS)에 의한 자동 초점 알고리즘을 제안한다. 새로운 방식의 표적 선정 및 정렬과 방위 방향 반복 위상 추정 방식을 통해 기존 WLS보다 견고한 성능을 보이게 된다. 비행 시험을 통해 획득한 SAR 원시데이터에 제안한 방식을 적용하고 성능을 분석하여 제안한 방식의 유효함과 우수성을 입증하도록 한다.

Optimal design of homogeneous earth dams by particle swarm optimization incorporating support vector machine approach

  • Mirzaei, Zeinab;Akbarpour, Abolfazl;Khatibinia, Mohsen;Siuki, Abbas Khashei
    • Geomechanics and Engineering
    • /
    • 제9권6호
    • /
    • pp.709-727
    • /
    • 2015
  • The main aim of this study is to introduce optimal design of homogeneous earth dams with oblique and horizontal drains based on particle swarm optimization (PSO) incorporating weighted least squares support vector machine (WLS-SVM). To achieve this purpose, the upstream and downstream slopes of earth dam, the length of oblique and horizontal drains and angle among the drains are considered as the design variables in the optimization problem of homogeneous earth dams. Furthermore, the seepage through dam body and the weight of dam as objective functions are minimized in the optimization process simultaneously. In the optimization procedure, the stability coefficient of the upstream and downstream slopes and the seepage through dam body as the hydraulic responses of homogeneous earth dam are required. Hence, the hydraulic responses are predicted using WLS-SVM approach. The optimal results of illustrative examples demonstrate the efficiency and computational advantages of PSO with WLS-SVM in the optimal design of homogeneous earth dams with drains.

클러스터링 방법을 이용한 TSK 퍼지추론 시스템의 설계 및 해석 (Design and Analysis of TSK Fuzzy Inference System using Clustering Method)

  • 오성권
    • 한국정보전자통신기술학회논문지
    • /
    • 제7권3호
    • /
    • pp.132-136
    • /
    • 2014
  • 본 논문에서는 주어진 데이터 전처리를 통한 새로운 형태의 TSK기반 퍼지 추론 시스템을 제안한다. 제안된 모델은 주어진 데이터의 효율적인 처리를 위해 클러스터링 기법인 Fuzzy C-Means 클러스터링 방법을 이용하였다. 제안된 새로운 형태의 퍼지추론 시스템의 전반부는 FCM 을 통하여 정규화된 멤버쉽 함수와 클러스터 수를 결정하기 때문에, 멤버쉽함수의 형태 및 개수를 정의할 필요가 없어, 모델의 구조 또한 간단한 형태를 이룬다. 본 논문에서 사용된 후반부는 4가지 형태로-간략추론, 1차선형추론, 2차선형추론, 변형된 2차선형추론-가 있으며, 이는 효율적인 후반부구조를 찾는데 주도적인 역할을 한다. 또한 제안된 모델의 후반부 파라미터 계수는 Weighted Least Squares Estimation(WLSE)을 사용하여 동정하며, Least Squares Estimation(LSE)를 적용한 모델의 성능과 비교한다. 마지막으로, Boston housing 데이터를 사용하여 제안된 모델의 성능을 평가하였다.

On the Effect of Estimated Mean for the Weighted Symmetric Estimator

  • Key Il Shin;Hee Jeong Kang
    • Communications for Statistical Applications and Methods
    • /
    • 제4권3호
    • /
    • pp.903-909
    • /
    • 1997
  • The ordinary least squares estimator and the corresponding pivotal statistics have been widely used for the unit test. Recently several test criteria based on maximum likelihood estimators and weighted symmetric estimator have been proposed for testing the unit root hypothesis in the autoregressive processes. Pantula at el. (1994) showed that the weighted symmetric estimator has good power properties. In this article we use an adjusted estimator for mean in the model when we use weighted symmetric estimator. A simulation study shows that for the small samples, this new test criterion has better power properties than the weighted symmetric estimator.

  • PDF

바코드 신호의 강인한 복원 (Robust Restoration of Barcode Signals)

  • 이한아;이정태
    • 전기학회논문지
    • /
    • 제56권10호
    • /
    • pp.1859-1864
    • /
    • 2007
  • Existing barcode signal restoration algorithms are not robust to unmodeled outliers that may exist in scanned barcode images due to scratches, dirts, etc. In this paper, we describe a robust barcode signal restoration algorithm that uses the hybrid $L_1-L_2$ norm as a similarity measure. To optimze the similarity measure, we propose a modified iterative reweighted least squares algorithm based on the one step minimization of a quadratic surrogate function. In the simulations and experiments with barcode images, the proposed method showed better robustness than the conventional MSE based method. In addition, the proposed method converged quickly during optimization process.

A new generalization of exponentiated Frechet distribution

  • Diab, L.S.;Elbatal, I.
    • International Journal of Reliability and Applications
    • /
    • 제17권1호
    • /
    • pp.65-84
    • /
    • 2016
  • Motivated by the recent work of Cordeiro and Castro (2011), we study the Kumaraswamy exponentiated Frechet distribution (KEF). We derive some mathematical properties of the (KEF) including moment generating function, moments, quantile function and incomplete moment. We provide explicit expressions for the density function of the order statistics and their moments. In addition, the method of maximum likelihood and least squares and weighted least squares estimators are discuss for estimating the model parameters. A real data set is used to illustrate the importance and flexibility of the new distribution.

Different estimation methods for the unit inverse exponentiated weibull distribution

  • Amal S Hassan;Reem S Alharbi
    • Communications for Statistical Applications and Methods
    • /
    • 제30권2호
    • /
    • pp.191-213
    • /
    • 2023
  • Unit distributions are frequently used in probability theory and statistics to depict meaningful variables having values between zero and one. Using convenient transformation, the unit inverse exponentiated weibull (UIEW) distribution, which is equally useful for modelling data on the unit interval, is proposed in this study. Quantile function, moments, incomplete moments, uncertainty measures, stochastic ordering, and stress-strength reliability are among the statistical properties provided for this distribution. To estimate the parameters associated to the recommended distribution, well-known estimation techniques including maximum likelihood, maximum product of spacings, least squares, weighted least squares, Cramer von Mises, Anderson-Darling, and Bayesian are utilised. Using simulated data, we compare how well the various estimators perform. According to the simulated outputs, the maximum product of spacing estimates has lower values of accuracy measures than alternative estimates in majority of situations. For two real datasets, the proposed model outperforms the beta, Kumaraswamy, unit Gompartz, unit Lomax and complementary unit weibull distributions based on various comparative indicators.

A WEIGHTED GLOBAL GENERALIZED CROSS VALIDATION FOR GL-CGLS REGULARIZATION

  • Chung, Seiyoung;Kwon, SunJoo;Oh, SeYoung
    • 충청수학회지
    • /
    • 제29권1호
    • /
    • pp.59-71
    • /
    • 2016
  • To obtain more accurate approximation of the true images in the deblurring problems, the weighted global generalized cross validation(GCV) function to the inverse problem with multiple right-hand sides is suggested as an efficient way to determine the regularization parameter. We analyze the experimental results for many test problems and was able to obtain the globally useful range of the weight when the preconditioned global conjugate gradient linear least squares(Gl-CGLS) method with the weighted global GCV function is applied.

보완 가중 최소자승기법을 이용한 피동거리 추정필터 설계 (A Modified Weighted Least Squares Approach to Range Estimation Problem)

  • 황익호;나원상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2088-2090
    • /
    • 2003
  • A practical recursive weighted least square(WLS) solution is proposed to solve the passive ranging problem. Apart from the previous works based on the extended Kalman filter(EKF), to ensure the convergency at long-range, the proposed scheme makes use of line-of-sight(LOS) rate instead of bearing information. The influence of LOS rate measurement errors is investigated and it is asserted that the WLS estimates contain bias and scale factor errors. Together with simple compensation algorithm, the estimation errors of proposed filter can be reduced dramatically.

  • PDF

Exploring Spatial Patterns of Theft Crimes Using Geographically Weighted Regression

  • Yoo, Youngwoo;Baek, Taekyung;Kim, Jinsoo;Park, Soyoung
    • 한국측량학회지
    • /
    • 제35권1호
    • /
    • pp.31-39
    • /
    • 2017
  • The goal of this study was to efficiently analyze the relationships of the number of thefts with related factors, considering the spatial patterns of theft crimes. Theft crime data for a 5-year period (2009-2013) were collected from Haeundae Police Station. A logarithmic transformation was performed to ensure an effective statistical analysis and the number of theft crimes was used as the dependent variable. Related factors were selected through a literature review and divided into social, environmental, and defensive factors. Seven factors, were selected as independent variables: the numbers of foreigners, aged persons, single households, companies, entertainment venues, community security centers, and CCTV (Closed-Circuit Television) systems. OLS (Ordinary Least Squares) and GWR (Geographically Weighted Regression) were used to analyze the relationship between the dependent variable and independent variables. In the GWR results, each independent variable had regression coefficients that differed by location over the study area. The GWR model calculated local values for, and could explain the relationships between, variables more efficiently than the OLS model. Additionally, the adjusted R square value of the GWR model was 10% higher than that of the OLS model, and the GWR model produced a AICc (Corrected Akaike Information Criterion) value that was lower by 230, as well as lower Moran's I values. From these results, it was concluded that the GWR model was more robust in explaining the relationship between the number of thefts and the factors related to theft crime.