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On the Effect of Estimated Mean
for the Weighted Symmetric Estimator
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Abstract

The ordinary least squares estimator and the corresponding pivotal statistics have
been widely used for the unit root test. Recently several test criteria based on
maximum likelihood estimators and weighted symmetric estimator have been proposed
for testing the unit root hypothesis in the autoregressive processes. Pantula af el.
(1994) showed that the weighted symmetric estimator has good power properties. In
this article we use an adjusted estimator for mean in the model when we use
weighted symmetric estimator. A simulation study shows that for the small samples,
this new test criterion has better power properties -than the weighted symmetric
estimator.

1. Introduction

Consider the first order autoregressive process given a forward representation

Yi—p=p0o(Yi-1— w)+a,
and a backward representation
Yi—p=0(Yis1— )+

where {a,}, {n,) are sequences of serially uncorrelated (0, ¢?) random variables.

Now consider the class of estimators, where the estimator of o is the o that minimizes

Xo)= ;wt[ Y~ u—0o(Y— )]+ g(l — we MY, = o Yy — 1. (LD

The ordinary least squares estimator studied by Dickey and Fuller (1979) is obtained by
setting w,=1. The estimator obtained by setting w,=0.5 is the symmetric estimator studied

by Dickey af el.(1984). The weighted symmetric estimator is constructed with
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t—1
n
For this model, the unit root test is a i:est of Hy: p=1 vs H,: p<{l. These three

estimators can be used for the unit root test. The weighted symmetric estimator has the best

power properties among them. See the results reported by Pantula atf el. (1994). Also the

limiting distributions can be found in Pantula af el. (1994)

w,= t=1,2,3,---n. For more details, see Fuller (1996).

For the zero mean case, the limiting distribution of the weighted symmetric estimator

efined by Buw= (35 V¥, 1} { 3 Vi+ 2 ¥em s
2 Pue—1) =% (260) (T -1-20),
where (G, T) = ‘2(g%a%, V2gia), gi=(—1)""12{(2i— D} ! and {a;} is a sequence of

independent normal random variables with mean zero and variance one. The pivotal statistic
which is similar to the usual t-test is given by

T { Bume— 1M Vot 3 Vm) - 53
and the limiting distribution is

Tuwe =% (26) "V T*—1-20),

where s%m= nl—2 X ?’u,wse)-

For the mean estimated case, the limiting distribution of the weighted symmetric estimator
is known as following:

n( 0, uwe— 1= (G—H) H(T?—1)/2— TH+2H - G}, (1.2)

A ,Zz(yf“ (Y1~ p) A_':gY,+§,;Y, _ S5/
Where p,‘.wsp_ — N ~ ,y M= (zn_z) al'ld H_ 1;2 g%at.
Y=+ (Y- Y

The pivotal weighted symmetric statistic for the mean estimated case is

~ Zp,m—l

r“’me= — ~ ~ —
(Y= + 3 (¥em DYm) 2 s,
and the limiting distribution is

Twe—t (G—HY)VA(T*—1)/2— TH+2H'— G).

(1.3)

A time serics with zero mean is seldom encountered in practice. Except for the ordinary
least squares estimator, the pivotal estimators generally have power that is comparable to or
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greater than that based on n(o—1). Thus in this paper we focus on the pivotal estimator
for the mean estimated case. The empirical distribution of the pivotal weighted symmetric
statistic is tabulated in Fuller(1996).

In section 2 we develop an adjusted weighted symmetric estimator and section 3 contains
the empirical distributions and the powers of the proposed estimator. We have made some
concluding remarks in section 4.

2. Adjusted weighted symmetric estimator.

In this section we develop an adjusted mean estimator for the weighted symmetric
estimator. First consider the estimators of mean g such as

o= g% @.1)
m= '21(;,:_ §Y' . 22)

Fuller (1996) indicated that the power of using (2.2) is better than that of using (2.1) for
the small sample cases. Define an alternative estimator of mean as following:

SV HA-Y)

Lo= - (2.3)

where Y, and Y, are the first and the last observations respectively. Note that in the unit
root case the order of Y, is O,(V).
The proposed adjusted weighted symmetric estimator is

PHQAIRIC AR
o™ S (Y i)+ 3V )

and the pivotal estimator is

~

: . (24)
(R (Y B

where sfm——— n1—2 X /F\’p.awse)-

Due to the effect of the first observation and the last one in the unit root case, we shall
show that the test criterion based on (2.4) has better power than that of Fuller(1996) in (1.3).
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3. Simulation results

In this section, we compare the empirical power of the two test criteria described in (1.3)
and (2.4). Here we have in mind the test of p=1 against the alternative that p¢1. We first

present the empirical distributions of the test based on the adjusted weighted symmetric
estimator and then study empirical powers.

3.1 Empirical Percentiles

Our model is Y,— u= o(Y,_,— )+ a, where a,~MN0,1). To construct the percentiles, we
let” Y1=a;, u=0, p=1, and generate the @, as independent standard normal random
variables. The RNNOR function in FORTRAN is used to generate the a@,’s. For a given

sample size n, we generated 50,000 replications of sample size n and computed the test
statistics. The percentiles are reported in Tables 1 and Table 2.

Table 1. Percentiles of Ar,,_m, the pivotal adjusted weighted symmetric estimator

Sample size Probability of a Smaller Value
0.01 0025 0.05 01 09 0% 095 099
25 -334 -292 -258 -222 077 129 173 221
50 -319 -284 -255 -227 039 084 123 166
100 -316 -282 -253 -223 019 059 093 137
250 -314 -281 -252 -222 006 042 074 119

Table 2. Empirical 5% Critical Values for Unit Root Test

Test statistic n
25 50 100 250
T.me Pantula(1994) -2.66 -2.61 -2.58 -2.54
Fuller(1996) -2.60 -2.57 -2.55 -2.54
Proposed -2.66 -2.59 -2.56 -2.53

ru. awse "2.58 _255 _253 —252
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We used the proposed critical values for the comparison of the power of 7, suse. Notice
that the used critical values are slightly different from Pantula(1994) and Fuller(1996).

3.2 Empirical powers

In this section we study the empirical power of the statistics described in (1.3) and (2.4).
Critical values for 5%-level tests are given in Table 2. But the 5%-level critical values are
slightly different from that reported in Fuller(1996) and Pantula(1994). In this comparison we
used the critical values reported in Table 2. We considered two cases, (1) Y ~ N(0,1) and

2 Y, ~ N[0,(1—0% '] and generated samples of size n=25, 50, 100, and 250 with

©0=0.98, 0.95, 0.90, 0.85, 0.80, and 0.70. The powers are based on 50,000 Monte Carlo
replications. Empirical powers are summarized in the following Table 3 to Table 6. In case

(1) we used Y, = q;, whereas Yi=a,(1—0?) "% in case (2).

Table 3. Empirical powers for 5%-level Test criteria(n=25, 50,000 replications)

o0
Statistic 0.98 095 093 090 08 08 0.7
. Y, ~ NO,1)
Ty e 6.21 798 943 1206 1691 2305 3921
Ty ase 6.31 813 978 1251 1765 2411 4048
Y, ~ M0,(1-05)71]
Ty use 5.43 665 774 990 138 1911 3523
Ty ase 5,53 673 798 1001 1428 1961 3553

Table 4. Empirical powers for 5%-level Test criteria(n=50, 50,000 replications)

0
Statistic 0.98 095 093 0.90 0.85 0.8 0.7
N Y, ~ M0,1)
Ty use 763 1297 1739 2501 4150 5973 8792
Ty e 7.71 1314 1768 2551 4233 6052  88.09
Y, ~ M0,(1—0%7']
T se 6.43 9.97 1327 1970 3438 5325 8495

Ty ause 645  10.02 1338 1980 3455 5315 8458
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Table 5. Empirical powers for 5%-level Test criteria(n=100, 50,000 replications)

o
Statistic 0.98 0.95 0.93 0.90 0.85 0.8 0.7
- Y ~ MO0,1)
Ty wse 11.26 2591 39.38 61.49 8874 98.32 99.99
},,_ anse 11.37 26.30 40.01 62.30 89.16 98.34 99.99

Y ~ M0,(1—0)71]
8.60 1964 3078 5281 8390 9690 9997
T aume 8.66 1977 3100 5300 8388 9675 99.95

~

Ty ume

Table 6. Empirical powers for 5%-level Test criteria(n=250, 50,000 replications)

o0
Statistic 0.98 095 093 09 08 08 0.7
R Y, ~ NO,D
Ty uce 2677 7869 9582 9985 10000 100.00 100.00
Ty ause 26.95 7901 9591 9985 10000 100.00 100.00
Y; ~ MO,(1—p% 7]
Ty use 2005 6999 9246 9964 9999 100.00 100.00
Ty aume 20.11 7001 9238 9961 9999 100.00 100.00

By the results of Table 3 to Table 6, we observe the followings.

1 Y~ MOo,1)
The test criterion based on }y,m, the adjusted weighted symmetric estimator, is superior

to that of 7, ., the weighted symmetric estimator, for all sample sizes.

2 Y, ~ N[0,(1—0)7"

1. For sample size n=25, the test criterion based on 7, g is superior to that of T use-

2. For sample size n=50, 100 and p close to 1, the test criterion based on Ar,,,ame is

superior to that of Ar,"m. For values of o smaller than 0.8, the test criterion based on

A

T, awse 1S COmpetitive to that of /E',,_ wser
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3. For sample size n=250, the test criteria based on T, use and T,.ause have the almost
same powers for all values of p.

4. Concluding remarks

We have discussed two test criteria for testing the null hypothesis of a unit root in AR(1)
process. Based on our simulation studies, regardless of initial value assumption, the criterion
of the adjusted weighted symmetric estimator is superior to that of the weighted symmetric
estimator when the sample size is smaller than 100. For the large sample size case, the two
test criteria achieved almost the same powers for all values of p, which verifies that the two
test criterion have the same limiting distribution.

Even though we do not study the other criteria such as the criteria suggested by Elliot
‘at el.(1992), the criteria of maximum likelihood estimator by Gonzalez-Farias (1992),
comparing the simulation results reported by Pantula at el. (1994) and ours, the criterion of
the adjusted weighted symmetric estimators has fairy good power properties when sample size
is smaller than 100.

So this paper gives us some evidences to improve the weighted symmetric estimator for the
unit oot case in the small sample case and for the small sample case, this new test criterion
is recommended.

References

(1] Dickey, D. A, and Fuller, W. A. (1979). Distribution of estimators for Autoreressive Time
Series with a Unit Root, Journal of the American Statistical Association, 74,
427-431.

[2] Dickey, D. A., Hasza, D. P, and Fuller, W. A. (1984). Testing for Unit Root in Seasonal
Time Series, Journal of the American Statistical Association, 79, 355-367.

[3] Elliot, G., and Rothenberg,T. J, and Stock, J. H.(1992). " Efficient Tests for an
Autoregressive Unit Root,” Unpublished paper presented at the NBER-NSF Time
Series Seminar, October 31, Chicago.

[4] Fuller, W. A. (1996). Introduction to Statistical Time Series, Wiley, Second edition.

[5] Gonzalez-Farias, G. M. (1992), A New Unit Root Test for Autoregressive Time Series,
Unpublished Ph. D. Thesis, North Carolina State University, Dept. of Statistics

[6] Pantula, S. G., Gonzalez-Farias, G. M., and Fuller, W. A. (1994). A Comparison of Unit
Root Test Criteria, Journal of Business and Economic Statistics, Vol. 12, No. 4,
449-459.



