• 제목/요약/키워드: weight-reduced structure

검색결과 289건 처리시간 0.031초

가로등에 적합한 고효율 멀티채널 LED 조명 구동장치 설계 (The Design of High efficiency multi-channel LED light Driver suitable for Streetlamp)

  • 송제호;김환용
    • 한국산학기술학회논문지
    • /
    • 제15권7호
    • /
    • pp.4489-4493
    • /
    • 2014
  • LED 조명 구동장치는 150W 이상에서 효율과 발열문제가 있고 W(와트)수가 다른 조명기기를 교체하는데 불편함이 있다. 본 논문에서는 멀티채널 LED 조명 구동장치를 드라이버 연동형 구조의 전원시스템과 멀티채널 구조형태의 드라이버 회로내장형으로 설계하였다. 본 개발품은 전원효율 93% 이상 및 역율 0.98 이상의 자동 제어 컨버터 구조로써 드라이버 연동형 구조의 고효율 LED 조명 구동장치와 자기보상방식의 자기최적화 구조의 드라이버다. 따라서, 본 논문은 THD 10% 이하와 기존 컨버터 대비 중량이 40% 이상 감소하였다.

금형가공센터 고속 이송체의 최적설계 (Structural Design Optimization of a High Speed Machining Center Using a Simple Genetic Algorithm)

  • 최영휴;박선균;배병태;이재윤;김태형;박보선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.74-78
    • /
    • 2001
  • In this study, a multi-step optimization technique combined with a simple genetic algorithm is introduce to the structural design optimization of a high speed machining center. In this case, the design problem is to find out the best design variables which minimize the static compliance, the dynamic compliance, and the weight of the machine structure and meet some design constraints simultaneously. Dimensional thicknesses of the thirteen structural members along the static force loop of the machine structure are adopted as design variables. The first optimization step is a static design optimization, in which the static compliance and the weight are minimized under some dimensional and safety constraints. The second step is a dynamic design optimization, where the dynamic compliance and the weight are minimized under the same constraints. After optimization, the weight of the moving body was reduced to 9.1% of the initial design respectively. Both static and dynamic compliances of the optimum design are also in the feasible range even thought they were slightly increased than before.

  • PDF

고속 화차용 대차프레임의 경량화를 위한 최적설계 (Shape Optimization of a Bogie frame for the Reduction of its Weight)

  • 김현수;안찬우;최경호;박정호
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.186-192
    • /
    • 2002
  • As industry is developed, the faster transportation of freight train is demanded. The optimum design of a structure requires the determination of economical member size and shape of a structure which will satisfy the design conditions and the functions. In this study, it is attempted to minimize the dead weight of bogie frame. From the numerical results in the shape and size optimization of the bogie frame, it is known that the weight can be reduced up to 17.45% with the displacement, stress, first natural frequency and critical buckling-load constraints. The first natural frequency and the critical buckling load of the optimized model is larger than that of the lowest design value. Stress and displacement conditions are also satisfied within the design conditions. From the results, the optimal model is stable and useful for the improvement of railway carriages.

고중량 지지 가능한 이족보행로봇의 개발 (Development of Biped Walking Robot Capable of Supporting Heavy Weight)

  • 최형식;이상준;오주환;강영환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.63-64
    • /
    • 2006
  • In this paper, design modification was performed to improve the structure of ex-developed 12 D.O.F Biped walking robot, KUBIR-1 similar with human beings. The motion of KUBIR-1 was slow and had a limited walking space. Hence I designed an improved BWR named KUBIR-2 with 12 degree of freedom. KUBIR-2 was designed to solve the following problems of KUBIR-1. First, KUBIR-2 was more simply designed in the four-bar-link mechanism, and its weight was reduced. Second, it had the built-in controller and motor driver. Third, walking velocity of KUBIR-2 was increased by improvement of speed and motion joint angle range. In addition to these, we modified the structure of the foot for more stable walking.

  • PDF

기포제를 사용한 경량 콘크리트의 역학적 특성 및 동결융해 평가에 관한 실험적 연구 (An Experimental Study on Freezing-Thawing and Mechanical Properties of Lightweight Foamed Concrete Using Micro Foaming Agent)

  • 민태범;우영제;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 추계 학술논문 발표대회
    • /
    • pp.69-72
    • /
    • 2009
  • This research is focused on the applying of the foaming agent which can make the independent pore in the concrete structure in order to make a lightweight concrete structure. This lightweight foamed concrete can satisfy both the required strength and the mechanical properties as structural members. In addition, anti freezing-thawing properties also required. As a result of the unit volume-weight measurement, when the foaming agent mixed at 0.5% to 1%, the lightweight foamed concrete can be applied for the structural member. Also the density and compressive strength measurement results reveals that it will be suitable as structural member with 21MPa strength, when the density is betweenity8 to 1.9 and foaming agent quantities are 0.5% to 1%. Finally the result of freezing-thawing experiment, the effect freezing-thawing damage reduced according to adding foaming agent because those foaming agent make micro-pores in the structure which are not seen in the ordinary concrete structure.

  • PDF

경량화에 의한 한국형발사체 궤도투입성능 향상 분석 (Analysis of Orbit Injection Performance of KSLV-II by Weight Reduction)

  • 김혜성;양성민;최정열
    • 한국추진공학회지
    • /
    • 제22권5호
    • /
    • pp.141-151
    • /
    • 2018
  • 발사체 경량화에 따른 한국형발사체 투입성능 예측을 위해 궤적계산 프로그램을 작성하였다. 이 프로그램을 이용하여 단 별 구조비 감소 및 엔진 성능 개선에 따른 지구 저궤도 및 태양동기궤도 투입성능을 추정하였으며, 목표궤도에 투입 가능한 페이로드 중량을 성능 판단지표로 두었다. 한국형발사체의 구조비를 기존 대비 60% 수준까지 경량화 할 경우, 지구 저궤도 및 태양동기궤도에 최대 4.5톤, 3톤의 우주화물을 수송할 수 있을 것으로 보인다. 구조 경량화와 함께 90톤급, 10톤급의 개선 엔진을 탑재할 경우 태양동기궤도에 최대 3.65톤의 페이로드를 투입할 수 있다.

샌드위치 패널을 이용한 함정탑재장비용 방진 베이스 개발 (Development of the Anti-vibration Base for the Onboard Equipment of the Naval Vessel Using Sandwitch Panel)

  • 한형석;이경현;박성호;위양현
    • 한국소음진동공학회논문집
    • /
    • 제26권4호
    • /
    • pp.365-374
    • /
    • 2016
  • The underwater radiated noise can be reduced by decreasing the structure borne noise of the on-board equipment. Therefore, the structure borne noise of the onborad installed equipment is strongly restricted by ROK navy with MIL-Std 740-2. Usually, the vibration transmissibility from the equipment to the hull of the ship is dependent on its mount characteristics. Even though the double mount structure is proper to apply for ship board application rather than single mount, it is not widely applied due to the weight and volume resriction of the ship. Therefore, in this research, the base using sandwitch panel which can act as double mount structure is suggested and its noise reduction capacity is verified with analytic calculation as well as experiment.

유전자 알고리듬 기반 다단계 최적설계 방법을 이용한 웨이퍼 단면 연삭기 구조물의 경량 고강성화 최적설계 (Structural Design Optimization of a Wafer Grinding Machine for Lightweight and Minimum Compliance Using Genetic Algorithm)

  • 박현만;최영휴;최성주;하상백;곽창용
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.81-85
    • /
    • 2005
  • In this paper, the structural design optimization of a wafer grinding machine using a multi-step optimization with genetic algorithm is presented. The design problem, in this study, is to find out the optimum configuration and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously under several design constraints. The first design step is shape optimization, in which the best structural configuration is found by getting rid of structural members that have no contributions to the design objectives from the given initial design configuration. The second and third steps are sizing optimization. The second design step gives a set of good design solutions having higher fitness for lightweight and minimum static compliance. Finally the best solution, which has minimum dynamic compliance and weight, is extracted among those good solution set. The proposed design optimization method was successfully applied to the structural design optimization of a high precision wafer grinding machine. After optimization, both static and dynamic compliances are reduced more than $92\%\;and\;93\%$ compared with the initial design, which was designed empirically by experienced engineers. Moreover the weight of the optimized structure are also slightly reduced than before.

  • PDF

PFOS에 만성노출된 곳체다슬기, Semisulcospira gottschei의 생존, 운동성, 성장 및 기관계 구조 (Effect of Chronic Exposure of PFOS (Perfluorooctane Sulfonate) on Survival, Activity, Growth, and Organ Structure of the Melania Snail, Semisulcospira gottschei (Gastropoda: Pleuroceridae))

  • 이재우;박정준;진영국;정애진;조현서;이정식
    • Environmental Analysis Health and Toxicology
    • /
    • 제22권2호통권57호
    • /
    • pp.119-128
    • /
    • 2007
  • The present study was conducted to find out effect of PFOS on survival, activity, growth and organ structure of the melania snail, Semisulcospira gottschei. Experimental groups were composed of one control condition and four PFOS exposure condition (0.1, 0.5, 1.0 and 5.0 mg/L). After 16 week exposure, survival rate and activity were not significantly influenced at the two lower exposure groups, 0.1 and 0.5 mg/L, but they were significantly reduced in 1.0 and 5.0 mg/L groups. Total weight and meat weight rate (MWR) were reduced in PFOS exposure group in comparison to control group. Also, histological degenerations such as acidification of mucous, necrosis and split of muscular fiber bundle, atrophy of anterior pedal gland were recognized in the foot. Hepatopancreas showed the atrophy and degeneration of the digestive cell, vacuolation of digestive gland and closure of lumen in digestive gland.

LCC를 고려한 BOX구조물 뒷채움 재료의 경제성 분석 (Economic Analysis of Box Mechanical Behavior Materials Using LCC Analysis)

  • 박영민;김수용
    • 한국건설관리학회논문집
    • /
    • 제10권6호
    • /
    • pp.40-47
    • /
    • 2009
  • 경량기포혼합토는 경량성으로 인해 구조물 등에 작용하는 하중이 저감되어 연약지반의 뒷채움 재료로 사용되지만, 일반토사에 비하여 초기시공비용이 많이 소요되어 아직 국내에서는 많이 적용되고 있지 않다. 주로 뒷채움 재료는 초기시공비가 적게 소요되는 일반토사를 사용하고 있으나, 일반토사의 덧씌우기 공법은 횟수가 증가함에 따라 사용연수가 감소된다. 특히 연약지반에 설치된 BOX구조물이나 교대 뒷채움 인근의 단차 발생 시 덧씌우기 공법은 일시적인 대체공법은 가능하지만, 덧씌우기 두께에 대한 하중만큼 추가 하중이 발생하게 되므로 결국 단차에 대한 해결책은 되지 못한다. 따라서 본 연구에서는 BOX구조물 뒷채움 재료인 일반토사와 경량기포혼합토의 두 가지 대안에 대하여 LCC 분석을 실시하고 경제적 측면에서 보다 합리적인 의사결정을 할 수 있는 경제성 분석을 제시하고자 하였다. 그 결과 경량기포혼합토가 일반토사에 비해 초기시공비용은 많이 소요되지만 유지관리 측면에서는 비용이 더 적게 소요되어 경제성을 확보할 수 있는 것으로 분석되었다.