• Title/Summary/Keyword: weight sensor

Search Result 578, Processing Time 0.031 seconds

Utility Bounds of Joint Congestion and Medium Access Control for CSMA based Wireless Networks

  • Wang, Tao;Yao, Zheng;Zhang, Baoxian;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.193-214
    • /
    • 2017
  • In this paper, we study the problem of network utility maximization in a CSMA based multi-hop wireless network. Existing work in this aspect typically adopted continuous time Markov model for performance modelling, which fails to consider the channel conflict impact in actual CSMA networks. To maximize the utility of a CSMA based wireless network with channel conflict, in this paper, we first model its weighted network capacity (i.e., network capacity weighted by link queue length) and then propose a distributed link scheduling algorithm, called CSMA based Maximal-Weight Scheduling (C-MWS), to maximize the weighted network capacity. We derive the upper and lower bounds of network utility based on C-MWS. The derived bounds can help us to tune the C-MWS parameters for C-MWS to work in a distributed wireless network. Simulation results show that the joint optimization based on C-MWS can achieve near-optimal network utility when appropriate algorithm parameters are chosen and also show that the derived utility upper bound is very tight.

A Study on Selection of Effective Engineering Design Problem based on LEGO Mindstorm NXT for Basic Design Education (레고 마인드스톰 NXT를 활용한 기초설계 교과목에서의 효과적인 공학설계과제 선정방안 연구)

  • Shin, Youn-Soon;Sohn, Dai-Geun;Lee, Kyung-Ho;Hong, Sung-Ho;Lee, Kangwoo;Jung, Jin-Woo
    • Journal of Engineering Education Research
    • /
    • v.19 no.2
    • /
    • pp.60-69
    • /
    • 2016
  • This paper deals with the selection method of effective engineering design problem based on LEGO Mindstorm NXT for basic design education. By YouTube case study of various LEGO-based engineering designs for olympic sports, performance criteria have been developed including programming complexity, structural complexity, sensor/actuator complexity and variety of game operation. Programming complexity includes range of programming code length and possible program variety. Structural complexity includes variety of structural elements such as length, shape, weight, and volume to overcome design restrictions. Sensor/actuator complexity includes variety of sensor used and number of possible actuator assemblies. Variety of game operation includes game complexity and required creativity to make LEGO robots. Based on these performance criteria, four representative sports were selected as the candidates for effective engineering design problem. Finally, feasibility and attributes of each candidate were verified by real implementation examples.

Versatile robotic platform for structural health monitoring and surveillance

  • Esser, Brian;Huston, Dryver R.
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.325-338
    • /
    • 2005
  • Utilizing robotic based reconfigurable nodal structural health monitoring systems has many advantages over static or human positioned sensor systems. However, creating a robot capable of traversing a variety of civil infrastructures is a difficult task, as these structures each have unique features and characteristics posing a variety of challenges to the robot design. This paper outlines the design and implementation of a novel robotic platform for deployment on ferromagnetic structures as an enabling structural health monitoring technology. The key feature of this design is the utilization of an attachment device which is an advancement of the common magnetic base found in the machine tool industry. By mechanizing this switchable magnetic circuit and redesigning it for light weight and compactness, it becomes an extremely efficient and robust means of attachment for use in various robotic and structural health monitoring applications. The ability to engage and disengage the magnet as needed, the very low power required to do so, the variety of applicable geometric configurations, and the ability to hold indefinitely once engaged make this device ideally suited for numerous robotic and distributed sensor network applications. Presented here are examples of the mechanized variable force magnets, as well as a prototype robot which has been successfully deployed on a large construction site. Also presented are other applications and future directions of this technology.

A Study for Smart Overload Vehicle Regulation System (지능형 과적단속을 위한 시스템 구축 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Park, Jung-Hoon;Choi, Ji-Sun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.399-404
    • /
    • 2011
  • Overload vehicles have demoralizing influence upon the social overhead capital, economics of nation, traffic flow and road safe as various components. Accordingly, this study established a ubiquitous sensor network system to develop an intelligent regulation system to monitor overloaded vehicles in motion. and Unlike WIM, after detecting the axle of driving vehicles by measuring deformation of roads, this system calculates the weights of vehicles by using signals from the strain sensors installed under the road and an analysis method. Also the study conducted an simulation test for vehicle load analysis using genetic algorithm. and tested wireless sensor for USN system.

Design of a 170 GHz Notch Filter for the KSTAR ECE Imaging Sensor Application

  • Mohyuddin, Wahab;Woo, Dong Sik;Kim, Sung Kyun;Kim, Kang Wook;Choi, Hyun-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.8-12
    • /
    • 2016
  • A planar, light-weight, and low-cost notch filter structure is required for the KSTAR ECEI (Electron Cyclotron Emission Imaging) system to protect the mixer arrays from spurious plasma heating power. Without protection, this heating power can significantly degrade or damage the performance of the mixer array. To protect mixer arrays, a frequency selective surface (FSS) structure is the suitable choice as a notch filter to reject the spurious heating power. The FSS notch filter should be located between the lenses of the ECEI system. This paper presents a 170 GHz FSS notch filter for the KSTAR ECEI sensor application. The design of such an FSS notch filter is based on the single-sided square loop geometry, because that makes it relatively insensitive to the incident angle of incoming wave. The FSS notch filter exhibits high notch rejection with low pass-band insertion loss over a wide range of incident angles. This paper also reviews the simulated and measured results. The proposed FSS notch filter might be implemented in other millimeter-wave plasma devices.

Development of Link Cost Function using Neural Network Concept in Sensor Network

  • Lim, Yu-Jin;Kang, Sang-Gil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.141-156
    • /
    • 2011
  • In this paper we develop a link cost function for data delivery in sensor network. Usually most conventional methods determine the optimal coefficients in the cost function without considering the surrounding environment of the node such as the wireless propagation environment or the topological environment. Due to this reason, there are limitations to improve the quality of data delivery such as data delivery ratio and delay of data delivery. To solve this problem, we derive a new cost function using the concept of Partially Connected Neural Network (PCNN) which is modeled according to the input types whether inputs are correlated or uncorrelated. The correlated inputs are connected to the hidden layer of the PCNN in a coupled fashion but the uncoupled inputs are in an uncoupled fashion. We also propose the training technique for finding an optimal weight vector in the link cost function. The link cost function is trained to the direction that the packet transmission success ratio of each node maximizes. In the experimental section, we show that our method outperforms other conventional methods in terms of the quality of data delivery and the energy efficiency.

Development of Colorimetric Paper Sensor for Pesticide Detection Using Competitive-inhibiting Reaction

  • Kim, Hyeok Jung;Kim, Yeji;Park, Su Jung;Kwon, Chanho;Noh, Hyeran
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.326-331
    • /
    • 2018
  • Contamination by pesticides is an everincreasing problem associated with fields of environmental management and healthcare. Accordingly, appropriate treatments are in demand. Pesticide detection methods have been researched extensively, aimed at making the detection convenient, fast, cost-effective, and easy to use. Among the various detecting strategies, paper-based assay is potent for real-time pesticide sensing due to its unique advantages including disposability, light weight, and low cost. In this study, a paper-based sensor for chlorpyrifos, an organophosphate pesticide, has been developed by layering three sheets of patterned plates. In colorimetric quantification of pesticides, the blue color produced by the interaction between acetylcholinesterase and indoxyl acetate is inhibited by the pesticide molecules present in the sample solutions. With the optimized paper-based sensor, the pesticide is sensitively detected (limit of detection =8.60 ppm) within 5min. Furthermore, the shelf life of the device is enhanced to 14 days after from the fabrication, by treating trehalose solution onto the deposited reagents. We expect the paper-based device to be utilized as a first-screening analytic device for water quality monitoring and food analysis.

Development of Plantar Pressure Measurement System and Personal Classification Study based on Plantar Pressure Image

  • Ho, Jong Gab;Kim, Dae Gyeom;Kim, Young;Jang, Seung-wan;Min, Se Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.3875-3891
    • /
    • 2021
  • In this study, a Velostat pressure sensor was manufactured to develop a plantar pressure measurement system and a C#-based application was developed to monitor and collect plantar pressure data in real time. In order to evaluate the characteristics of the proposed plantar pressure measurement system, the accuracy of plantar pressure index and personal classification was verified by comparing with MatScan, a commercial plantar pressure measurement system. As a result, the output characteristics according to the weight of the Velostat pressure sensor were evaluated and a trend line with the reliability of r2 = 0.98 was detected. The Root Mean Square Error(RMSE) of the weighted area was 11.315 cm2, the RMSE of the x coordinate of Center of Pressure(CoPx) was 1.036 cm and the RMSE of the y coordinate of Center of Pressure(CoPy) was 0.936 cm. Finally, inaccuracy of personal classification, the proposed system was 99.47% and MatScan was 96.86%. Based on the advantage of being simple to implement and capable of manufacturing at low cost, it is considered that it can be applied to various fields of measuring vital signs such as sitting posture and breathing in addition to the plantar pressure measurement system.

Rough Terrain Landing Technique of Quadcopter Based on 3-Leg Landing System (3-leg 랜딩 시스템 기반 쿼드콥터의 험지 착륙 기법)

  • Park, Jinwoo;Choi, Jiwook;Cheon, Donghun;Yi, Seungjoon
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.438-446
    • /
    • 2022
  • In this paper, we propose an intelligent three-legged landing system that can maintain stability and level even on rough terrain than conventional four-legged landing systems. Conventional landing gear has the limitation that it requires flat terrain for landing. The 3-leg landing system proposed in this paper extends the usable range of the legs and reduces the weight, allowing the quadcopter to operate in various environments. To do this, kinematics determine the joint angles and coordinates of the legs of the two-link structure. Based on the angle value of the quadcopter detected via the IMU sensor, the leg control method that corrects the posture is determined. A force sensor attached to the end of the leg is used to detect contact with the ground. At the moment of contact with the ground, landing control starts according to the value of the IMU sensor. The proposed system verifies its reliability in various environments through an indoor landing test stand. Finally, in an outdoor environment, the quadcopter lands on a 20 degree incline and 20 cm rough terrain after flight. This demonstrates the stability and effectiveness of the 3-leg landing system even on rough terrain compared to the 4-leg landing system.

A Study on Portable Weighing Scales Applicable to Poultry Farms (가금류 농장에 적용 가능한 이동식 중량 저울에 관한 연구)

  • Park, Sung Jin;Park, In Ji;Kim, Jin Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.155-159
    • /
    • 2022
  • Smart livestock, which combines information and communication technology (ICT) with livestock, can be said to be an effective solution to existing livestock problems such as productivity improvement, odors, and diseases. So far, it has hardly been universalized; thus, it is necessary to develop automation devices to reduce labor by localizing automation devices to expand the distribution of ICT technology to farms, and to advance precise specifications and health management technology using biometric information. Weighing scales currently being used in livestock farms are to prevent the spread of diseases by diagnosis and preparation for AI and other diseases in advance, using information on the growing weight of duck breeding. However, accurate values cannot be obtained due to poor breeding conditions. In this paper, we developed a separate data transmission system kit for the weighing scale and placed the sensor on top of the weighing scale so that the sensor wire is not affected by pollutants or ducks on the floor. A display function was provided, and a method of receiving and analyzing the serial port data of the weighing device, and then transmitting them to the data collection server was implemented.