• Title/Summary/Keyword: weather models

Search Result 619, Processing Time 0.023 seconds

A study on the action mechanism of internal pressures in straight-cone steel cooling tower under two-way coupling between wind and rain

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Yang, Q.;Wang, H.;Tamura, Y.
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.11-27
    • /
    • 2018
  • The straight-cone steel cooling tower is a novel type of structure, which has a distinct aerodynamic distribution on the internal surface of the tower cylinder compared with conventional hyperbolic concrete cooling towers. Especially in the extreme weather conditions of strong wind and heavy rain, heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind, but existing studies mainly focus on the impact effect brought by wind-driven rain to structure surface. In addition, for the indirect air cooled cooling tower, different additional ventilation rate of shutters produces a considerable interference to air movement inside the tower and also to the action mechanism of loads. To solve the problem, a straight-cone steel cooling towerstanding 189 m high and currently being constructed is taken as the research object in this study. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed with continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind sped and rainfall intensity on flow field mechanism, the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower cylinder is analyzed. On this basis, the internal pressures of the cooling tower under the most unfavorable working condition are compared between four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the 3D effect of equivalent internal pressure coefficient is the most significant when considering two-way coupling between wind and rain. Additional load imposed by raindrops on the internal surface of the tower accounts for an extremely small proportion of total wind load, the maximum being only 0.245%. This occurs under the combination of 20 m/s wind velocity and 200 mm/h rainfall intensity. Ventilation rate of shutters not only changes the air movement inside the tower, but also affects the accumulated amount and distribution of raindrops on the internal surface.

A Development of Regional Frequency Model Based on Hierarchical Bayesian Model (계층적 Bayesian 모형 기반 지역빈도해석 모형 개발)

  • Kwon, Hyun-Han;Kim, Jin-Young;Kim, Oon-Ki;Lee, Jeong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.1
    • /
    • pp.13-24
    • /
    • 2013
  • The main objective of this study was to develop a new regional frequency analysis model based on hierarchical Bayesian model that allows us to better estimate and quantify model parameters as well as their associated uncertainties. A Monte-carlo experiment procedure has been set up to verify the proposed regional frequency analysis. It was found that the proposed hierarchical Bayesian model based regional frequency analysis outperformed the existing L-moment based regional frequency analysis in terms of reducing biases associated with the model parameters. Especially, the bias is remarkably decreased with increasing return period. The proposed model was applied to six weather stations in Jeollabuk-do, and compared with the existing L-moment approach. This study also provided shrinkage process of the model parameters that is a typical behavior in hierarchical Bayes models. The results of case study show that the proposed model has the potential to obtain reliable estimates of the parameters and quantitatively provide their uncertainties.

A Calculation Method of in vivo Energy Consumption in Estimation of Harvesting Date for High Potato Solids (고 고형분함량 감자의 수확시기 예측모형을 위한 식물체내 에너지 소모량 추정)

  • Jung, Jae-Youn;Suh, Sang-Gon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.4
    • /
    • pp.284-291
    • /
    • 2010
  • A simulation modeling for predicting the harvesting date with high potato solids consists of development of mathematical models. The mathematical model on potato growth and its development should be obtained by using agricultural elements which analyze relations of solar radiation quantity, temperature, photon quantity, carbon dioxide exchange rate, water stress and loss, relative humidity, light intensity, and wind etc. But more reliable way to predict harvesting date against climatic change employs in vivo energy consumption for growth and induction shape in a slight environmental adaptation. Therefore, to calculate in vivo energy loss, we take a concept of estimate of the amount of basal metabolism in each tuber on the basis of $Wm={\int}^m_tf(x)dt$ and $Tp=\frac{Tm{\cdot}Wm^{Tp}}{Wm^{Tm}}$. In the validation experiments, results of measuring solid accumulation of potato harvested at simulated date agreed fairly well with the actual measured values in each regional field during the growth period of 2005-2009. The calculation method could be used to predict an appropriate harvesting date for a production of high potato solids according to weather conditions.

Investigation of Vertical Profiles of Meteorological Parameters and Ozone Concentration in the Mexico City Metropolitan Area

  • Benitez-Garcia, Sandy E.;Kanda, Isao;Okazaki, Yukiyo;Wakamatsu, Shinji;Basaldud, Roberto;Horikoshi, Nobuji;Ortinez, Jose A.;Ramos-Benitez, Victor R.;Cardenas, Beatriz
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.114-127
    • /
    • 2015
  • In the Mexico City Metropolitan Area (MCMA), ozone ($O_3$) concentration is still higher than in other urban areas in developed countries. In order to reveal the current state of photochemical air pollution and to provide data for validation of chemical transport models, vertical profiles of meteorological parameters and ozone concentrations were measured by ozonesonde in two field campaigns: the first one, during the change of season from wet to dry-cold (November 2011) and the second during the dry-warm season (March 2012). Unlike previous similar field campaigns, ozonesonde was launched twice daily. The observation data were used to analyze the production and distribution of ozone in the convective boundary layer. The observation days covered a wide range of meteorological conditions, and various profiles were obtained. The evolution of the mixing layer (ML) height was analyzed, revealing that ML evolution was faster during daytime in March 2012 than in November 2011. On a day in November 2011, the early-morning strong wind and the resulting vertical mixing was observed to have brought the high-ozone-concentration air-mass to the ground and caused relatively high surface ozone concentration in the morning. The amount of produced ozone in the MCMA was estimated by taking the difference between the two profiles on each day. In addition to the well-known positive correlation between daily maximum temperature and ozone production, effect of the ML height and wind stagnation was identified for a day in March 2012 when the maximum ground-level ozone concentration was observed during the two field campaigns. The relatively low ventilation coefficient in the morning and the relatively high value in the afternoon on this day implied efficient accumulation of the $O_3$ precursors and rapid production of $O_3$ in the ML.

Grain Yield Response of CERES-Barley Adjusted for Domestic Cultivars to the Simultaneous Changes in Temperature, Precipitation, and CO2 Concentration (기온, 강수량, 이산화탄소농도 변화에 따른 CERES-Barley 국내품종의 종실수량 반응)

  • Kim, Dae-Jun;Roh, Jae-Hwan;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.312-319
    • /
    • 2013
  • Our understanding of the sensitivities of crop responses to changes in carbon dioxide, temperature, and water is limited, which makes it difficult to fully utilize crop models in assessing the impact of climate change on future agricultural production. Genetic coefficients of CERES-Barley model for major domestic cultivars in South Korea (Olbori at Suwon, Albori at Milyang, Saessalbori at Iksan, and Samdobori at Jinju) were estimated from the observed data for daily weather and field trials for more than 10 years by using GenCalc in DSSAT. Data from 1997-2002 annual crop status report (Rural Development Administration, RDA) were used to validate the crop coefficients. The sitecalibrated CERES-Barley model was used to perform crop growth simulation with the 99 treatments of step change combinations in temperature, precipitation and carbon dioxide concentration with respect to the baseline climate (1981-2010) at four sites. The upper boundary corresponds to the 2071-2100 climate outlook from the RCP 8.5 scenario. The response surface of grain yield showed a distinct pattern of model behavior under the combined change in environmental variables. The simulated grain yield was most sensitive to $CO_2$ concentration, least sensitive to precipitation, and showing a variable response to temperature depending on cultivar. The emulated impacts of response surfaces are expected to facilitate assessment of projected climate impacts on a given cultivar in South Korea.

Simulation of crop growth under an intercropping condition using an object oriented crop model (객체지향적 작물 모델을 활용한 간작조건에서의 작물 생육 모의)

  • Kim, Kwang Soo;Yoo, Byoung Hyun;Hyun, Shinwoo;Seo, Beom-Seok;Ban, Ho-Young;Park, Jinyu;Lee, Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.214-227
    • /
    • 2018
  • An object oriented crop model was developed to perform crop growth simulation taking into account complex interaction between biotic and abiotic factors in an agricultural ecosystem. A set of classes including Atmosphere class, Plant class, Soil class, and Grower class were designed to represent weather, crop, soil, and crop management, respectively. Objects, which are instance of class, were linked to construct an integrated system for crop growth simulation. In a case study, yield of corn and soybean, which was obtained at an experiment farm in Rural Development Administration from 1984 to 1986, were compared with yield simulated using the integrated system. The integrated system had relatively low error rate of corn yield, e.g., <4%, under sole and intercropping conditions. In contrast, the system had a relatively large underestimation error for above ground biomass except for grain compared with those observed for corn and soybean. For example, estimates of biomass of corn leaf and stem was 31% lower than those of observed values. Although the integrated system consisted of simple models, the system was capable of simulating crop yield under an intercropping condition. This result suggested that an existing process-based model would be used to have more realistic simulation of crop growth once it is reengineered to be compatible to the integration system, which merits further studies for crop model improvement and implementation in object oriented paradigm.

Azimuthal Distribution of Daily Maximum Temperatures Observed at Sideslopes of a Grass-covered Inactive Parasitic Volcano ("Ohreum") in Jeju Island (제주도 초지피복 기생화산("오름")의 방위별 일 최고기온 분포)

  • Seo, Hee-Chul;Jeon, Seung-Jong;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 2008
  • Information on daily maximum air temperature is important in predicting the status of plants and insects, but the uneven and sparse distribution of weather stations prohibits timely access to the data in regions with complex topography. Since cumulative solar irradiance plays a critical role in determining daily maximum temperature on any sloping surfaces, derivation of a quantitative relationship between cumulative solar irradiance and the resultant daily maximum temperature is a prerequisite to development of such estimation models. Air temperatures at 8 sideslope locations with similar elevation and slope angle but aspect, circumventing a cone-shaped, grass-covered parasitic volcano (c.a., 570 m diameter for the bottom circle and 90m bottom-to-top height), were measured from June to December in 2007. Daily maximum temperatures from each location were compared with the average of 8 locations (assumed to be the temperature measured at a "horizontal reference" position). The temperature deviation at all locations increased with the day of year (or sun elevation) from summer solstice to winter solstice. Averaged over the entire period, the south facing location was warmer by $1^{\circ}C$ in daily maximum temperature than "horizontal reference" and the north facing location was cooler by $0.8^{\circ}C$ than the reference, resulting in the year round average south-north temperature difference of $1.8^{\circ}C$. In November, both south and north facing slopes showed the greatest deviation of $+2.0^{\circ}C$ and $-1.3^{\circ}C$, respectively in daily maximum temperature at monthly scale. On a daily scale, the greatest deviation was +3.8 and $2.7^{\circ}C$ at the south and north slope, respectively. The cumulative solar irradiance (on the slope for 4 hours from 11:00 to 15:00 TST) explained >60% of the variance in daily maximum temperature deviations among 8 locations, suggesting a feasibility of developing an estimation model for daily maximum temperature over complex topography at landscape scales.

Analysis of Importance by Defect Type in Apartment Construction (공동주택 건축공사 하자유형별 중요도 분석)

  • Kim, Do-Hyung;Lee, Dongyoun;Lee, Hak-Ju;Min, Yoon-Gi;Park, Insung;Cho, Hunhee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.4
    • /
    • pp.357-365
    • /
    • 2020
  • While numbers of apartment housing are continually rising in the domestic housing construction industry, apartment contractors are currently developing plane models, upgrading facilities, and relevant technology, and investing much efforts to meet the higher demands of consumers. However, the construction process of apartment housing involves the intricate properties of the construction industry such as materials, workforce, equipment, weather, and unpredictable situations. If any of these factors becomes discordant and results in interference and interruption of the construction process, then defects, both functional and aesthetic, are likely to occur due to errors in the plan of industry organizers and constructors. Therefore, this research identifies the types of defects in an apartment construction project and analyzes their relative importance. Firstly, this research reviews the previous research trends and will reduce the needs of this research. Afterward, defect repair costs corresponding to the different defect types are calculated by applying results of the research and performing frequency analysis on defect types included in 'Tenant preliminary research' on apartments constructed by Company A. As a result of analyzing the importance of defect type, the top six activities, including tile, floor, paper hanging, PL window, cabinetry, and kitchen cabinet, are found to be of high importance, and the top six activities in question need of repair and management of defects first. The results of this study will help establish a plan to initially respond to such problems as refusal to move in and filing a defect suit against delay in repairing defects.

A Study of Prediction of Daily Water Supply Usion ANFIS (ANFIS를 이용한 상수도 1일 급수량 예측에 관한 연구)

  • Rhee, Kyoung-Hoon;Moon, Byoung-Seok;Kang, Il-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.821-832
    • /
    • 1998
  • This study investigates the prediction of daily water supply, which is a necessary for the efficient management of water distribution system. Fuzzy neuron, namely artificial intelligence, is a neural network into which fuzzy information is inputted and then processed. In this study, daily water supply was predicted through an adaptive learning method by which a membership function and fuzzy rules were adapted for daily water supply prediction. This study was investigated methods for predicting water supply based on data about the amount of water supplied to the city of Kwangju. For variables choice, four analyses of input data were conducted: correlation analysis, autocorrelation analysis, partial autocorrelation analysis, and cross-correlation analysis. Input variables were (a) the amount of water supplied (b) the mean temperature, and (c)the population of the area supplied with water. Variables were combined in an integrated model. Data of the amount of daily water supply only was modelled and its validity was verified in the case that the meteorological office of weather forecast is not always reliable. Proposed models include accidental cases such as a suspension of water supply. The maximum error rate between the estimation of the model and the actual measurement was 18.35% and the average error was lower than 2.36%. The model is expected to be a real-time estimation of the operational control of water works and water/drain pipes.

  • PDF

A Study on Comparative Analysis of Socio-economic Impact Assessment Methods on Climate Change and Necessity of Application for Water Management (기후변화의 사회경제적 영향평가 방법론 비교분석과 물관리 부문 적용 필요성에 관한연구)

  • Chee, Hee Mun;Park, Doo Ho
    • Journal of Korean Society of societal Security
    • /
    • v.4 no.2
    • /
    • pp.57-64
    • /
    • 2011
  • Although it is uncertain that the cause of changed pattern of the natural disaster related to water (i.e. flood and drought) is due to excessive carbon dioxide yielded from economic activity or the increased number of sunspots, it is apparent that there have been unusual climate change that directly affects the water resource management. Due to such a frequent unusual weather activities, there have been increased natural disaster and the most direct and major reason is considered as climate change. As we see, the climate change necessarily causes social costs. Especially, the effects on the water resource due to flood and drought take the considerable part of such costs. Therefore, this study is basic work to develop a new economic analysis technique to be used in pursuing appropriate adaptation project in field of the amount of cost damage through analysis of the effects of the climate change on the water resource. The models appeared in many reports for cost assessment of climate change were various (e.g., PAGE, DICE, AIM, IMAGE, MERGE, and etc.) and this report summarizes general characteristics of each model. To assess the effects of climate change of the water management, we defined the field of the water management on climate change. The results help post-study in field of the climate change's social-economic effect assessment, can be employed for the prioritizing process of the national fund's investment.

  • PDF