Browse > Article
http://dx.doi.org/10.5532/KJAFM.2018.20.2.214

Simulation of crop growth under an intercropping condition using an object oriented crop model  

Kim, Kwang Soo (Department of Plant Science, Seoul National University)
Yoo, Byoung Hyun (Department of Plant Science, Seoul National University)
Hyun, Shinwoo (Department of Plant Science, Seoul National University)
Seo, Beom-Seok (Department of Plant Science, Seoul National University)
Ban, Ho-Young (Department of Plant Science, Seoul National University)
Park, Jinyu (Department of Plant Science, Seoul National University)
Lee, Byun-Woo (Department of Plant Science, Seoul National University)
Publication Information
Korean Journal of Agricultural and Forest Meteorology / v.20, no.2, 2018 , pp. 214-227 More about this Journal
Abstract
An object oriented crop model was developed to perform crop growth simulation taking into account complex interaction between biotic and abiotic factors in an agricultural ecosystem. A set of classes including Atmosphere class, Plant class, Soil class, and Grower class were designed to represent weather, crop, soil, and crop management, respectively. Objects, which are instance of class, were linked to construct an integrated system for crop growth simulation. In a case study, yield of corn and soybean, which was obtained at an experiment farm in Rural Development Administration from 1984 to 1986, were compared with yield simulated using the integrated system. The integrated system had relatively low error rate of corn yield, e.g., <4%, under sole and intercropping conditions. In contrast, the system had a relatively large underestimation error for above ground biomass except for grain compared with those observed for corn and soybean. For example, estimates of biomass of corn leaf and stem was 31% lower than those of observed values. Although the integrated system consisted of simple models, the system was capable of simulating crop yield under an intercropping condition. This result suggested that an existing process-based model would be used to have more realistic simulation of crop growth once it is reengineered to be compatible to the integration system, which merits further studies for crop model improvement and implementation in object oriented paradigm.
Keywords
Crop model; Object oriented programming; Intercropping; UML; Agricultural ecosystem;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Steduto, P., T. C. Hsiao, D. Raes, and E. Fereres, 2009: AquaCrop- The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agronomy Journal 101(3), 426-437.   DOI
2 Sui, D. Z., and R. C. Maggio, 1999: Integrating GIS with hydrological modeling: practices, problems, and prospects. Computers, Environment and Urban Systems 23(1), 33-51.   DOI
3 Thorp, K. R., J. W. White, C. H. Porter, G. Hoogenboom, G. S. Nearing, and A. N. French, 2012: Methodology to evaluate the performance of simulation models for alternative compiler and operating system configurations. Computers and Electronics in Agriculture 81, 62-71.   DOI
4 Tsubo, M., S. Walker, and H. O. Ogindo, 2005: A simulation model of cereal-legume intercropping systems for semi-arid regions. Field Crops Research 93(1), 10-22.   DOI
5 Volk, M., J. Hirschfeld, A. Dehnhardt, G. Schmidt, C. Bohn, S. Liersch, and P. W. Gassman, 2008: Integrated ecological-economic modelling of water pollution abatement management options in the Upper Ems River Basin. Ecological Economics 66(1), 66-76.
6 White, J. W., G. Hoogenboom, B. A. Kimball, and G. W. Wall, 2011: Methodologies for simulating impacts of climate change on crop production. Field Crops Research 124(3), 357-368.   DOI
7 Woli, P., J. W. Jones, K. T. Ingram, and C. W. Fraisse, 2012: Agricultural reference index for drought (ARID). Agronomy Journal 104, 287-300.   DOI
8 Zhang, X., J. H. Lee, Y. Abawi, Y. H. Kim, D. McClymont, and H. D. Kim, 2007: Testing the simulation capability of APSIM-ORYZA under different levels of nitrogen fertiliser and transplanting time regimes in Korea. Animal Production Science 47(12), 1446-1454.   DOI
9 Zhang, L., W. van der Werf, L. Bastiaans, S. Zhang, B. Li, J. H. J. Spiertz, 2008: Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Research 107(1), 29-42.   DOI
10 Whish, J. P. M., N. I. Herrmann, N. A. White, A. D. Moore, and D. J. Kriticos, 2015: Integrating pest population models with biophysical crop models to better represent the farming system. Environmental Modelling & Software 72, 418-425.   DOI
11 Kim, D. J., J. H. Roh, J. G. Kim, and J. I. Yun, 2013: The Influence of shifting planting date on cereal grains production under the projected climate change. Korean Journal of Agricultural and Forest Meteorology 15(1), 26-39.   DOI
12 Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. C. Hunt, P. W. Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie, 2003: The DSSAT cropping system model. European Journal of Agronomy 18(3-4), 235-265.   DOI
13 Keating, B. A., P. S. Carberry, G. L. Hammer, M. E. Probert, M. J. Robertson, D. Holzworth, N. I. Huth, J. N. G. Hargreaves, H. Meinke, Z. Hochman, G. McLean, K. Verburg, V. Snow, J. P. Dimes, M. Silburn, E. Wang, S. Brown, K. L. Bristow, S. Asseng, S. Chapman, R. L. McCown, D. M. Freebairn, and C. J. Smith, 2003: An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 18(3-4), 267-288.   DOI
14 Kim, D. J., S. O. Kim, K. H. Moon, and J. I. Yun, 2012: An outlook on cereal grains production in South Korea based on crop growth simulation under the RCP8.5 climate condition. Korean Journal of Agricultural and Forest Meteorology 14(3), 132-141. (in Korean with English abstract)   DOI
15 Lee, S. Y., C. K. Hong, H. B. Lee, D. Y. Kim, S. K. Ha, S. K. Han, B. L. Huh, and S. B. Kim, 1987: Intercropping with soybean and cowpea for increasing feed value of corn stover. Journal of Korean Society of Crop Science 32(2), 144-150. (in Korean with English abstract)
16 Kim, K. S., H. Kim, B. Y. Lee, C. K. Lee, and J. Kim. 2015: Requirement analysis of a system to predict crop yield under climate change. Korean Journal of Agricultural and Forest Meteorology 17(1), 1-14.   DOI
17 Kim, J., W. Sang, P. Shin, H. Cho, M. Seo, B. Yoo, and K. S. Kim, 2015: Evaluation of regional climate scenario data for impact assessment of climate change on rice productivity in Korea. Journal of Crop Science and Biotechnology 18(4), 257-264.   DOI
18 Kropff, M. J., and C. J. T. Spitters, 1991: A simple model of crop loss by weed competition from early observations on relative leaf area of the weeds. Weed Research 31(2), 97-105.   DOI
19 Lee, C. K., J. Kim, J. Shon, W. Yang, Y. H. Yoon, K. J. Choi, and K. S. Kim, 2012: Impacts of climate change on rice production and adaptation method in Korea as evaluated by simulation study. Korean Journal of Agricultural and Forest Meteorology 14(4), 207-221. (in Korean with English abstract)   DOI
20 Lee, C.-K., J. Kim, and K. S. Kim, 2015: Development and application of a weather data service client for preparation of weather input files to a crop model. Computers and Electronics in Agriculture 114, 237-246.   DOI
21 Li, C., S. Frolking, and R. Harriss, 1994: Modeling carbon biogeochemistry in agricultural soils. Global Biogeochemical Cycles 8(3), 237-254.   DOI
22 Moore, R. V., and C. I. Tindall, 2005: An overview of the open modelling interface and environment (the OpenMI). Environmental Science & Policy 8(3), 279-286.   DOI
23 Lobov, A., J. L. M. Lastra, and R. Tuokko, 2005: Application of UML in plant modeling for model-based verification: UML translation to TNCES. 3rd IEEE International Conference on Industrial Informatics(INDIN), Perth, WA, Australia, 495-501.
24 McCown, R. L., G. L. Hammer, J. N. G. Hargreaves, D. P. Holzworth, and D. M. Freebairn, 1996: APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agricultural Systems 50(3), 255-271.   DOI
25 Monteith, J. L., 1965: Light distribution and photosynthesis in field crops. Annals of Botany 29(1), 17-37.   DOI
26 Myers, T. S., I. Atkinson, and R. Johnstone, 2010: Supporting coral reef ecosystems research through modelling a reusable ontology framework. Applied Artificial Intelligence 24, 77-101.   DOI
27 Hedley, C., 2015: The role of precision agriculture for improved nutrient management on farms. Journal of the Science of Food and Agriculture 95, 12-19.   DOI
28 Peckham, S. D., E. W. H. Hutton, and B. Norris, 2013: A component-based approach to integrated modeling in the geosciences: The design of CSDMS. Computers & Geosciences 53, 3-12.   DOI
29 Raes, D., P. Steduto, T. C. Hsiao, and E. Fereres, 2017: AquaCrop, Version 6.0. Reference Manual. FAO, Land and Water Division, Rome, Italy.
30 Gregersen, J. B., P. J. A. Gijsbers, and S. J. P. Westen, 2007: OpenMI: Open modelling interface. Journal of Hydroinformatics 9(3), 175pp.   DOI
31 Irmak, A., J. W. Jones, W. D. Batchelor, and J. O. Paz, 2001: Estimating spatially variable soil properties for application of crop models in precision farming. Transactions of the ASAE 44(5), 1343-1353.
32 Jiang, P., M. Elag, P. Kumar, S. D. Peckham, L. Marini, and L. Rui, 2017: A service-oriented architecture for coupling web service models using the Basic Model Interface (BMI). Environmental Modelling & Software 92, 107-118.   DOI
33 Castronova, A. M., J. L. Goodall, and M. B. Ercan, 2013: Integrated modeling within a hydrologic information system: an OpenMI based approach. Environmental Modelling & Software 39, 263-273.   DOI
34 Basso, B., J. T. Ritchie, F. J. Pierce, R. P. Braga, and J. W. Jones, 2001: Spatial validation of crop models for precision agriculture. Agricultural Systems 68(2), 97-112.   DOI
35 Bouman, B. A. M., and H. H. van Laar, 2006: Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agricultural Systems 87(3), 249-273.   DOI
36 Bulatewicz, T., A. Allen, J. M. Peterson, S. Staggenborg, S. M. Welch, and D. R. Steward, 2013: The simple script wrapper for OpenMI: enabling interdisciplinary m odeling studies. Environmental Modelling & Software 39, 283-294.   DOI
37 Chimonyo, V. G. P., A. T. Modi, and T. Mabhaudhi, 2016: Simulating yield and water use of a sorghum-cowpea intercrop using APSIM. Agricultural Water Management 177, 317-328.   DOI