• Title/Summary/Keyword: wearable electronics

Search Result 226, Processing Time 0.027 seconds

Technical Trends of Stretchable Electrodes (신축성 전극 기술 개발 동향)

  • Choi, Su Bin;Lee, Cheul-Ro;Jung, Seung-Boo;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.23-36
    • /
    • 2019
  • Stretchable electronic systems have recently been gaining more and more attention because of their potential applications in various implements such as electronic skins and wearable/shape-deformable electronics. An essential factor of the stable stretchable device implementation is that all the elements constituting the system must have sufficient elasticity and exhibit stable performances even under repetitive stretching conditions. In this paper, we review the latest research results to secure the stable stretchability of electrodes among the various components of the system.

Autonomous Mobile Robot Control using the Wearable Devices Based on EMG Signal for detecting fire (EMG 신호 기반의 웨어러블 기기를 통한 화재감지 자율 주행 로봇 제어)

  • Kim, Jin-Woo;Lee, Woo-Young;Yu, Je-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.176-181
    • /
    • 2016
  • In this paper, the autonomous mobile robot control system for detecting fire was proposed using the wearable device based on EMG(Electromyogram) signal. Myo armband is used for detecting the user's EMG signal. The gesture was classified after sending the data of EMG signal to a computer using Bluetooth communication. Then the robot named 'uBrain' was implemented to move by received data from Bluetooth communication in our experiment. 'Move front', 'Turn right', 'Turn left', and 'Stop' are controllable commands for the robot. And if the robot cannot receive the Bluetooth signal from a user or if a user wants to change manual mode to autonomous mode, the robot was implemented to be in the autonomous mode. The robot flashes the LED when IR sensor detects the fire during moving.

A Study on Energy Efficiency in Walking and Stair Climbing for Elderly Wearing Complex Muscle Support System

  • Jang-hoon Shin;Hye-Kang Park;Joonyoung Jung;Dong-Woo Lee;Hyung Cheol Shin;Hwang-Jae Lee;Wan-Hee Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.4
    • /
    • pp.478-487
    • /
    • 2022
  • Objective: This study was conducted to analyze the effect of wearable complex muscle support system on energy efficiency during walking in elderly. Design: Cross sectional study Methods: Twenty healthy elderly participated in this study. All subjects performed a 6 minuteswalk test(6MWT) and stair climbing test in dual, slack and no suit conditions. In each condition, oxygen consumption(VO2), metabolic equivalents(METs), energy expenditure measures(EEm), physiological cost index(PCI), walking velocity and heartrate were measured. Through repeated measured ANOVA, it was investigated whether there was a statistically significant difference in the measurement results between the three conditions. Results: In over-ground walking, VO2, METs and EEm showed significant differences between no suit and slack conditions(p<0.05). In stair climbing, VO2 showed significant difference between slack and dual conditions(p<0.05). Also, METs and EEm showed significant differences between no suit and slack, and between slack and dual conditions(p<0.05). Conclusions: Wearing the wearable complex muscle support system for elderly does not have much benefit in energy metabolism efficiency in over-ground, but there is a benefit in stair walking.

Fabrication of Inkjet Printed Strain Gauge Using PEDOT:PSS (PEDOT:PSS기반 잉크젯 프린팅 스트레인 게이지의 제작)

  • Kye, Ji Won;Han, Dong Cheul;Shin, Han Jae;Yeom, Se-hyuk;Lee, Wanghoon
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.56-59
    • /
    • 2017
  • This paper presents the Inkjet-printed strain gauge using PEDOT:PSS. The strain gauge (width 0.6 mm, length 20 mm, thickness $0.3{\mu}m$) was printed on the PET film using PEDOT:PSS ink. The resistance variation of the fabricated strain gauge was measured by the digital multi-meter with the displacement range of -4 to 10 mm. As the measured result, resistance variation (${\Delta}R/R_0$) has approximately 0.75%, linearity of 99.87%. The fabricated strain gauge is expected to the various applications such as tape type pressure sensor, PMS(pressure mapping sensor), wearable devices.

Technical trend of stretchable electrodes (차세대 스트레처블 전극의 기술 개발동향)

  • Lee, Sang-Mok;Lim, Ji-Eun;Kim, Han-Ki
    • Vacuum Magazine
    • /
    • v.4 no.2
    • /
    • pp.15-23
    • /
    • 2017
  • This article reviews technical trend in research of stretchable electrodes for wearable devices, bio-integrated devices, and stretchable electronics. Stretchable electronics is new emerging class of electronics following flexible electronics. One of the most difficult challenges in the development of stretchable electronic is to realize high performance stretchable electrodes with a low resistivity and high strain failure and stretchability against severe strain of the substrate. For this reason, there are many reports on the promising stretchable electrodes including CNT, graphene, Ag nanowire, and composite materials. We outline the recent research for stretchable substrate and stretchable electrode materials to realize highly stretchable electrodes.

Flexible Energy Harvesting Device based on Hybrid Piezoelectric Nanocomposite made of Lead-Free BCTZ Ceramic and Piezo-polymer (비납계 BCTZ 압전세라믹과 압전폴리머로 제작된 하이브리드 나노복합체 기반의 플렉서블 에너지 하베스팅 소자)

  • Park, Sung Cheol;Lee, Jae Hoon;Kim, Yeon-gyu;Park, Kwi-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.72-79
    • /
    • 2022
  • Piezoelectric energy harvesting technologies, which can be used to convert the electricity from the mechanical energy, have been developed in order to assist or power the wearable electronics. To realize non-toxic and biocompatible electronics, the lead-free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 (BCTZ) nanoparticles (NPs) are being studied with a great attention as flexible energy harvesting device. Herein, piezoelectric hybrid nanocomposites were fabricated using BCTZ NPs-embedded poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] matrix to improve the performance of flexible energy harvester. Output performance of the fabricated energy device was investigated by the well-optimized measurement system during the periodically bending and releasing motions. The generated open-circuit voltage and the short-circuit current of the piezoelectric hybrid nanocomposite-based energy harvester reached up to ~15 V and ~1.1 ㎂, respectively; moreover, the instantaneous power of 3.5 ㎼ is determined from load voltage and current at the external load of 20 MΩ. This research is expected to cultivate a new approach to high-performance wearable self-powering electronics.

The Effects of Stair Climbing Using Wearable Robot Bot Fit's Resistance

  • Jang-hoon Shin;Hwang-Jae Lee;Dokwan Lee;Wan-hee Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.13 no.2
    • /
    • pp.205-212
    • /
    • 2024
  • Objective: The purpose of this study is to confirm the exercise effect when combining wearable exercise assist robot, Bot fit's resist mode (Samsung Electronics) and stair climbing. Design: Cross-section study Methods: Targeting 53 adults and seniors, foot pressure and muscle activity were measured when climbing 3-story stairs using foot pressure measurement equipment (W-insole Science System) and surface muscle activity measurement equipment (sEMG; FreeEMG, BTS Bioengineering, Italy) using Bot Fit's resist mode. All subjects were measured without wearing Bot Fit, and the data between the two conditions were compared and analyzed. Results: The front area(p<0.01) and middle area(p<0.05) foot pressures of adults significantly increased when wearing the Bot fit. Frontal area foot pressure significantly increased in elderly people with knee arthritis and obesity(p<0.05). The gastrocnemius activity in all subjects significantly decreased after wearing Bot Fit(p<0.01). In elderly people with knee arthritis, the muscle activity of the rectus femoris was significantly reduced(p<0.05)., and in obese elderly people, the muscle activity of the gastrocnemius muscle was significantly reduced(p<0.05). Conclusions: Based on the results of this study, it is possible to induce correct stair climbing posture when climbing stairs using Bot fit resistance mode. In particular, it is expected to be an effective exercise for strengthening muscle endurance by increasing the activity of the rectus femoris muscle.

A 0.9-V human body communication receiver using a dummy electrode and clock phase inversion scheme

  • Oh, Kwang-Il;Kim, Sung-Eun;Kang, Taewook;Kim, Hyuk;Lim, In-Gi;Park, Mi-Jeong;Lee, Jae-Jin;Park, Hyung-Il
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.859-874
    • /
    • 2022
  • This paper presents a low-power and lightweight human body communication (HBC) receiver with an embedded dummy electrode for improved signal acquisition. The clock data recovery (CDR) circuit in the receiver operates with a low supply voltage and utilizes a clock phase inversion scheme. The receiver is equipped with a main electrode and dummy electrode that strengthen the capacitive-coupled signal at the receiver frontend. The receiver CDR circuit exploits a clock inversion scheme to allow 0.9-V operation while achieving a shorter lock time than at 3.3-V operation. In experiments, a receiver chip fabricated using 130-nm complementary metal-oxide-semiconductor technology was demonstrated to successfully receive the transmitted signal when the transmitter and receiver are placed separately on each hand of the user while consuming only 4.98 mW at a 0.9-V supply voltage.

Development of Wearable Physical Activity Monitoring System (웨어러블 신체 생체 활동 모니터링 시스템 개발)

  • Park, Eun-Ju;Park, Do-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.1
    • /
    • pp.34-39
    • /
    • 2018
  • Along with the development of ICT technology, wearable devices of various sizes and shapes have been developed. In addition, performance and specifications are rebuilt with IOT fusion products so that they can connect with the current smartphone. This is one of the general-purpose technologies of the 4th industrial revolution, which is spot-lighted with technology that changes the quality and environment of our lives. Along with this, as new technology products combining health care technology increases, various functions are provided to users who need it. Wearable technology is ongoing trend of technology development. It also sells products developed as products in the form of smart watches. At present, various related products are made in various ways, and it is recommended to use the Arduino processor in accordance with the application. In this study, we developed wearable physical activity monitoring system using open source hardware based TinyDuino. TinyDuino is an ultra-compact Arduino compatible board made on the basis of Atmega process Board, and it can be programmed in open source integrated development environment(named Sketch). The physical activity monitoring system of the welfare body can be said to be a great advantage, as a smart u-Healthcare system that can perform daily health management.

Research Trends of Two-Dimensional Nanomaterial-Based Tactile Sensors (이차원 나노 소재 기반 촉각 센서 기술 동향)

  • Min, B.K.;Kim, S.J.;Yi, Y.;Choi, C.G.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.1
    • /
    • pp.123-130
    • /
    • 2018
  • Tactile sensors, which are commonly referred to as pressure and strain sensors, have been extensively investigated to meet the demands for attachable and wearable electronics for monitoring the health status or activity of human users. For this purpose, the introduction of two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs) with high mechanical strength at the atomic scale is very suitable for tactile sensors applicable for use in human-friendly devices. In this paper, we examine a descriptive summary of a tactile sensor and review state-of- the-art research trends of 2D material-based tactile sensors in terms of the material and architecture. Finally, we propose a roadmap for future studies into advanced tactile sensors based on our ongoing research.