• Title/Summary/Keyword: wear and friction

Search Result 1,221, Processing Time 0.03 seconds

Machining Characteristics of SiC reinforced Composite by multiple diamond-coated drills (다이아몬드 피복공구에 의한 SiC 강화 복합재료의 절삭특성)

  • M. Chen;Lee, Y. M.;S. H. Yang;S. I. Jang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.533-537
    • /
    • 2003
  • Compared to sintered polycrystalline diamond (PCD), the deposited thin film diamond has a great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of high performance in high speed machining non-ferrous difficult-to-cut materials in the field of automobiles industry, aeronautics and astronautics industry, diamond-coated drills find large potentialities in commercial applications. However, the poor adhesion of the diamond film on the substrate and high surface roughness of the drill flute adversely affect the tool lift and machining quality and they become the main technical barriers for the successful development and commercialization of diamond-coated drills. In this paper, diamond thin films were deposited on the commercial WC-Co based drills by the electron aided hot filament chemical vapor deposition (EACVD). A new multiple coating technology based on changing gas pressure in different process stages was developed. The large triangular faceted diamond grains may have great contribution to the adhesive strength between the film and the substrate, and the overlapping ball like blocks consisted of nanometer sized diamond crystals may contribute much to the very low roughness of diamond film. Adhesive strength and quality of diamond film were evaluated by scanning electron microscope (SEM), atomic force microscope (AFM), Raman spectrum and drilling experiments. The ring-block tribological experiments were also conducted and the results revealed that the friction coefficient increased with the surface roughness of the diamond film. From a practical viewpoint, the cutting performances of diamond-coated drills were studied by drilling the SiC particles reinforced aluminum-matrix composite. The good adhesive strength and low surface roughness of flute were proved to be beneficial to the good chip evacuation and the decrease of thrust and consequently led to a prolonged tool lift and an improved machining quality. The wear mechanism of diamond-coated drills is the abrasive mechanical attrition.

  • PDF

Study on the Effects of Flows on the Acceleration of the Grooving Corrosion in the ERW Pipe (ERW강관에서 홈부식의 가속화에 미치는 유동의 영향에 관한 연구)

  • Kim, Jae-Seong;Kim, Yong;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.85-91
    • /
    • 2008
  • The grooving corrosion is caused mainly by the different microstructures between the matrix and weld which is formed during the rapid heating and cooling cycle in welding. By this localized corrosion reaction of pipes, it evolves economic problems such as the early damage of industrial facilities and pipe lines of apartment, and water pollution. So lots of researches were carried out already about grooving corrosion mechanism of ERW carbon steel pipe but there is seldom study for water hammer happened by fluid phenomenon and corrosion rate by flow velocity. In this study, the analysis based on hydrodynamic and fracture mechanics was carried out. ANSYS, FLUENT and STAR-CD were used for confirmation of flow phenomenon and stress on the pipe. As the results, fatigue failure is able to be happened by water hammer and grooving corrosion rate is increased cause by turbulent. Grooving corrosion is happened on the pipe, then friction loss of fluid is occurred from corroded part. Erosion can be happened enough in corroded region of microscopic size that wear "V" form. Also pipe is able to be damaged by water hammer effects because of corroded region is general acting as a notch effects. Corrosion depth was more than half of total thickness, it can be damaged from water hammer pressure.

MODIFICATION OF METAL MATERIALS BY HIGH TEMPERATURE PULSED PLASMA FLUXES IRRADIATION

  • Vladimir L. Yakushin;Boris A. Kalin;Serguei S. Tserevitionov
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1-1
    • /
    • 2000
  • The results of the modification of metal materials treated by high temperature pulst:d plasma fluxes (HTlPPF) with a specific power of incident flux changing in the $(3...100)10^5{]\;}W/cm^2$ range and a pulse duration lying from 15 to $50{\;}\mu\textrm{s}$ have been presented. The results of HTPPF action were studied on the stainless steels of 18Cr-l0Ni, 16Cr- 15Ni, 13Cr-2Mo types; on the structural carbon steels of (13...35)Cr, St. 3, St. 20, St. 45 types; on the tool steels of U8, 65G, ShHI5 types, and others; on nickel and high nickel alloy of 20Cr-45Ni type; on zirconium- and vanadium-base alloys and other materials. The microstructure and properties (mechanical, tribological, erosion, and other properties) of modified materials and surface alloying of metals exposed to HTPPF action have been investigated. It was found that the modification of materials by HTPPF resulted in a simultaneous increase of several properties of the treated articles: microhardness of the surface and layers of 40...60 $\mu\textrm{m}$ in depth, tribological characteristics (friction coefficient, wear resistance), mechanical properties ({\sigma_y}, {\;}{\sigma_{0.2}}.{\;}{\sigma_r}) on retention of the initial plasticity ($\delta$), corrosion resistance, radistanation erosion under ion irradiation, and others. The determining factor of the changes observed is the structural-phase modification of the near-surface layers, in particular, the formation of the fine cellular structure in the near-surface layers at a depth of $20{\;}{\mu\textrm{m}}$ with dimension of cells changing in the range from 0.1 to $1., 5{\;}\mu\textrm{m}$, depending on the kind of material, its preliminary treatment, and the parameters of plasma fluxes. The remits obtained have shown the possibility of purposeful surface alloying of metals exposed to HTPPF action over a depth up to 20...45 $\mu\textrm{m}$ and the concentration of alloying element (Ni, Cr, V) up to 20 wt.%. Possible industrial brunches for using the treatment have been also considered, as well as some results on modifying the serial industrial articles by HTPPF.

  • PDF

Highly Reliable Triboelectric Rotational Energy Scavenger

  • Lee, Younghoon;Lee, Bada;Choi, Dukhyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.397-397
    • /
    • 2016
  • Triboelectric nanogenerators (TENG) can produce power from ambient mechanical sources and have strong points of high output performance, light weight, low cost, and easy manufacturing process. It is expected that TENG can be utilized in the fields of wireless electronics and self-powered devices in the world which pays attention to healthcare and the IoT. In this work, we focus on scavenging ambient rotational energy by using a durably designed TENG. In previous studies regarding harvesting rotation mode energy, the devices were based on sliding mechanism and durability was not considered as a major issue. However friction by rotation causes reliability problems due to wear and tear. Therefore, in this study, we convert rotary motion to linear motion utilizing a cam by which we can then utilize contact-mode TENG and improve device reliability. In order to increase output performance, bumper springs were used below the TENG and the optimum value for the bumper spring constant was analyzed theoretically. Furthermore, the inserting a soft substrate was proposed and its effect on high output was determined to be due to an increase in the contact area. By increasing the number of cam noses, the output frequency was shown to increase linearly. For the purpose of maximum power transfer, the input impedance of the device was determined. Finally, to demonstrate the use of the C-TENG as a direct power source, it was installed on a commercial bicycle wheel and connected to 180 LEDs. In conclusion we present a rotational motion TENG energy scavenger system designed for enhanced durability and optimized output by appropriate choice of spring constants and substrate.

  • PDF

A Study of a Changing of Physical and Chemical Intra-structure on Si-DLC Film during Tribological Test (실리콘 함유 DLC 박막의 마찰마모 시험에 의한 물리적 특성 및 화학적 결합 구조 변화 고찰)

  • Kim, Sang-Gweon;Lee, Jae-Hoon;Kim, Sung-Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.3
    • /
    • pp.127-132
    • /
    • 2011
  • The silicon-containing Diamond-like Carbon (Si-DLC) film as an low friction coefficient coating has especially treated a different silicon content by plasma-enhanced chemical vapor deposition (PECVD) process at $500^{\circ}C$ on nitrided-STD 11 mold steel with (TMS) gas flow rate. The effects of variable silicon content on the Si-DLC films were tested with relative humidity of 5, 30 and 85% using a ball-on-disk tribometer. The wear-tested and original surface of Si-DLC films were analysed for an understanding of physical and chemical characterization, including a changing structure, via Raman spectra and nano hardness test. The results of Raman spectra have inferred a changing intra-structure from dangling bonds. And high silicon containing DLC films have shown increasing carbon peak ratio ($I_D/I_G$) values and G-peak values. In particular, the tribological tested surface of Si-DLC was shown the increasing hardness value in proportional to TMS gas flow rate. Therefore, at same time, the structure of the Si-DLC film was changed to a different intra-structure and increased hardness film with mechanical shear force and chemical reaction.

The Effect of Boron Content and Deposition Temperature on the Microstructure and Mechanical Property of Ti-B-C Coating Prepared by Plasma-enhanced Chemical Vapor Deposition (PECVD법에 의해 증착된 Ti-B-C코팅막 내의 보론함량과 증착온도에 따른 미세구조 및 기계적 물성의 변화)

  • Ok, Jung-Tae;Song, Pung-Keun;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.3
    • /
    • pp.106-111
    • /
    • 2005
  • Ternary Ti-B-C coatings were synthesized on WC-Co and Si wafers substrates by a PECVD technique using a gaseous mixture of $TiCl_4,\;BCl_3,\;CH_4,\;Ar,\;and\; H_2$. The effects of deposition variables such as substrate temperature, gas ratio, $R_x=[BCl_3/(CH_4+BCl_3)]$ on the microstructure and mechanical properties of Ti-B-C coatings were investigated. From our instrumental analyses, the synthesized Ti-B-C coatings was confirmed to be composites consisting of nanocrystallites TiC, quasi-amorphous TiB2, and amorphous carbon at low boron content, on the contrary, nanocrystallites $TiB_2$, quasi-amorphous TiC, and amorphous carbon at relatively high boron content. The microhardness of the Ti-B-C coatings increased from $\~23 GPa$ of TiC to $\~38 GPa$ of $Ti_{0.33}B_{0.55}C_{0.11}$ coatings with increasing the boron content. The $Ti_{0.33}B_{0.55}C_{0.11}$ coatings showed lower average friction coefficient of 0.45, in addition, it showed relatively better wear behavior compared to other binary coatings of $TiB_2$ and TiC. The microstruture and microhardness value of Ti-B-C coatings were largely depend on the deposition temperature.

Mechanical Stability of TiN and DLC Coated Instrument of Pedicle Screw System (TiN 및 DLC 코팅된 척추경나사못시스템 수술기구의 기계적 안정성 분석)

  • Kang, Kwan-Su;Jung, Tae-Gon;Yang, Jae-Woong;Woo, Su-Heon;Park, Tea-Hyun;Jeong, Yong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.163-170
    • /
    • 2019
  • Durability of instrument is one of the most important factor to ensure accurate treatment and decrease failure for the orthopedic surgical operation. Normally, a set-screw driver tip has been processed with hard coating for their higher durability and wear resistance. And several surface modification methods were obtained such as titanium nitride (TiN) coating, diamond like carbon coating, other nitriding, and etc. In this study, we have surface modified on set-screw driver tip with TiN and DLC, investigated whether the TiN and DLC coatings affect the mechanical properties and durability of the set-screw driver tip in the pedicle screw system. The surface morphologies were observed with scanning-electron microscopy (SEM), and the static/dynamic torsional properties were investigated with universal testing machine based on ASTM F543. Coating thickness of each coatings were commonly around $1^{\circ}C$. Static torsional stiffness, and ultimate torque values for DLC and TiN coated samples were significantly higher than those of non-coated sample by the pared T-test. Surface morphology of after the dynamic torsional test was more clean with less scratch or friction traces from DLC coating than that of TiN coating and non-coated sample.

Microstructure of Ti-Cr-Si-N Coatings Deposited by a Hybrid System of Arc ion Plating and Sputtering Techniques (하이브리드 코팅시스템에 의해 제조된 Ti-Cr-Si-N 박막의 미세구조 및 기계적 특성연구)

  • Kang Dong Shik;Jeon Jin Woo;Song Pung Keun;Kim Kwang Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.3
    • /
    • pp.95-99
    • /
    • 2005
  • Quaternary Ti-Cr-Si-N coatings were synthesized onto steel substrates (SKD 11) using a hybrid method of arc ion plating (AIP) and sputtering techniques. For the Syntheses of Ti-Cr-Si-N coatings, the Ti-Cr-N coating process was performed substantially by a multi-cathodic AIP technique rising Cr and Ti targets, and Si was added by sputtering Si target during Ti-Cr-N deposition. In this work, comparative studies on microstructure and evaluation of mechanical properties between Ti-Cr-N and Ti-Cr-Si-N coatings were conducted. As the Si was incorporated into Ti-Cr-N coatings, the Ti-Cr-Si-N coatings showed largely increased hardness value of approximately 42 GPa than one of 28 GPa for Ti-Cr-N coatings. The average friction coefficient of Ti-Cr-N coatings largely decreased from 0.7 to 0.35 with increasing Si content up to 20 at. $\%$. In addition, wear behavior of Ti-Cr-N coatings against steel ball was much improved with Si addition due to the surface smoothening effect and tribe-chemical reaction.

Study on Dimensional Change in Wire Product During Wire-Drawing Process (선재 인발공정에서 인발제품의 선경변화에 대한 연구)

  • Moon, Chang-Sun;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.723-730
    • /
    • 2012
  • During the cold wire-drawing process, the diameter of a wire is reduced and the length of the wire is increased as the wire passes through the die. The pressure and sliding motion at the interface between the wire and die cause elastic recovery of the workpiece and friction and wear on the die. In addition, wire deformation and frictional heating raise the temperature of the wire and die, resulting in difficulty in manufacturing the drawn products according to a designated inner diameter of the die, deviating from the designated dimension or the inner diameter of the die. In this study, considering the die temperature distribution, the effects of dimensional changes of the drawn products were analyzed quantitatively; these changes are caused by the elastic deformation of the die, the elastic recovery of the workpiece, and the thermal deformation of both the die and the workpiece. It was confirmed that the elastic recovery of the workpiece influenced these changes the most. The initial dies considering these factors could avoid deviation from the designated dimension, and the desired drawn products were obtained by using the designed initial drawing dies.

A Study on the Property and Performance Characteristics of Different Kind Engine Oil by Endurance Test of Heavy-duty Diesel Engine (대형 디젤엔진 내구 시험에 의한 다른 종류 엔진오일의 물성 및 성능 특성에 관한 연구)

  • Lee, Minho;Kim, Jeonghwan;Song, Hoyoung;Kim, Giho;Ha, Jonghan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.48-56
    • /
    • 2014
  • Engine oil is an oil used for lubrication of various internal combustion engines. The main function is to reduce wear on moving parts; it also cleans, inhibits corrosion, improves sealing, and cools the engine by carrying heat away from moving parts. In engines, there are parts which move against each other. Otherwise, the friction wastes the useful power by converting the kinetic energy to heat. Those parts were worn away, which could lead to lower efficiency and degradation of the engine. It increases fuel consumption, decreases power output, and can induce the engine failure. This study was conducted to evaluate the relation between engine oil property changes and engine performance for the diesel engine. This test was performed by using 12L, 6 cylinder, heavy duty engines. Low SAPS 10W30 engine oil (two type engine oils) was used. Test procedure and method was in accordance with the modified CEC L-57-T97 (OM441LA) method. In this study, TAN, TBN, KV and metal components, engine power, blowby gas, A_F were presented to evaluate the relation with engine oil property changes and engine performance. TAN, TBN, KV and metal We found that the components were generally increased but engine performance did not change. This results mean that property changes did not affect on engine performance because those were not enough to affect engine performance.