• 제목/요약/키워드: weakly nonlinear theory

검색결과 10건 처리시간 0.024초

Numerical investigation of the effects angles of attack on the flutter of a viscoelastic plate

  • Sherov, A.G.;Khudayarov, B.A.;Ruzmetov, K.Sh.;Aliyarov, J.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권3호
    • /
    • pp.215-228
    • /
    • 2020
  • As is shown in the paper, the Koltunov-Rzhanitsyn singular kernel of heredity (when constructing mathematical models of the dynamics problem of the hereditary theory of viscoelasticity) adequately describes real mechanical processes, best approximates experimental data for a long period of time. A mathematical model of the problem of the flutter of viscoelastic plates moving in a gas with a high supersonic velocity is given. Using the Bubnov-Galerkin method, discrete models of the problem of the flatter of viscoelastic plates flowed over by supersonic gas flow are obtained. A numerical method is developed to solve nonlinear integro-differential equations (IDE) for the problem of the hereditary theory of viscoelasticity with weakly singular kernels. A general computational algorithm and a system of application programs have been developed, which allow one to investigate the nonlinear dynamic problems of the hereditary theory of viscoelasticity with weakly singular kernels. On the basis of the proposed numerical method and algorithm, nonlinear problems of the flutter of viscoelastic plates flowed over in a gas flow at an arbitrary angle are investigated. In a wide range of changes in various parameters of the plate, the critical velocity of the flutter is determined. It is shown that the singularity parameter α affects not only the oscillations of viscoelastic systems, but the critical velocity of the flutter as well.

ON SOME NEW NONLINEAR DELAY AND WEAKLY SINGULAR INTEGRAL INEQUALITIES

  • Ma, Qing-Hua;Debnath, L.
    • Journal of applied mathematics & informatics
    • /
    • 제26권5_6호
    • /
    • pp.877-888
    • /
    • 2008
  • This paper deals with some new nonlinear delay and weakly singular integral inequalities of Gronwall-Bellman type. These results generalize the inequalities discussed by Xiang and Kuang [19]. Several other inequalities proved by $Medve{\check{d}}$ [15] and Ou-Iang [17] follow as special cases of this paper. This work can be used in the analysis of various problems in the theory of certain classes of differential equations, integral equations and evolution equations. A modification of the Ou-Iang type inequality with delay is also treated in this paper.

  • PDF

A REVIEW ON THE MATHEMATICAL ASPECTS OF FLUID FLOW PROBLEMS IN AN INFINITE CHANNEL WITH ARBITRARY BOTTOM TOPOGRAPHY

  • Chakrabarti, A.;Martha, S.C.
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1583-1602
    • /
    • 2011
  • A special system of partial differential equations (PDEs) occur in a natural way while studying a class of irrotational inviscid fluid flow problems involving infinite channels. Certain aspects of solutions of such PDEs are analyzed in the context of flow problems involving multiple layers of fluids of different constant densities in a channel associated with arbitrary bottom topography. The whole analysis is divided into two parts-part A and part B. In part A the linearized theory is employed along with the standard Fourier analysis to understand such flow problems and physical quantities of interest are derived analytically. In part B, the same set of problems handled in part A are examined in the light of a weakly non-linear theory involving perturbation in terms of a small parameter and it is shown that the original problems can be cast into KdV type of nonlinear PDEs involving the bottom topography occurring in one of the coefficients of these equations. Special cases of bottom topography are worked out in detail and expressions for quantities of physical importance are derived.

볼테라 필터를 이용한 디지털 통신 채널의 적응 비선형 보상기법 (Adaptive nonlinear compensation of digital communication channels using a volterra filter)

  • 김진영;최봉준;남상원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.16-19
    • /
    • 1996
  • The objective of this paper is to present a new adaptive nonlinear compensation method, which is based upon the Pth-order inverse theory and can be implemented in a systematic way, for weakly nonlinear systems that can be modeled by a Volterra series. In particular, employment of the proposed approach for the linearization of a given nonlinear system leads to the effective elimination of (up to a required order) nonlinearities in the overall system output. To demonstrate the feasibility of the proposed method, simulation results using a satellite communication system model are also provided.

  • PDF

약 비선형 파랑에 대한 연직 2차원 부방파제의 동수역학적 해석 (Hydrodynamic Analysis of Two-dimensional Floating Breakwater in Weakly Nonlinear Waves)

  • 이정우;조원철
    • 대한토목학회논문집
    • /
    • 제26권5B호
    • /
    • pp.539-549
    • /
    • 2006
  • 본 연구에서는 포텐셜 이론, 섭동법, 경계요소법에 근간을 둔 이차의 시간영역 수치모델을 개발하고 이를 이용하여 폰툰형 부방파제의 성능을 평가하였다. 다양한 설계조건에 대하여 파력, 운동변위, 자유수면고, 투과율 등의 변화를 고찰하였으며, 파랑의 약 비선형성이 방파제의 동수역학적 특성에 미치는 영향을 분석하는데 주안점을 두었다. 수치모의 수행 결과, 이차의 성분 파는 동유체력, 계류장력, 운동변위에 미치는 영향이 큰 것으로 분석되었으나, 파랑의 약 비선형성이 투과율에 미치는 영향은 매우 작아 선형해석만으로도 파랑제어효율을 평가할 수 있음을 확인하였다. 또한 파랑제어효율이 우수한 수심과 흘수의 비, 파수와 폭과의 관계 등을 제시하였다.

ROBUST DUALITY FOR GENERALIZED INVEX PROGRAMMING PROBLEMS

  • Kim, Moon Hee
    • 대한수학회논문집
    • /
    • 제28권2호
    • /
    • pp.419-423
    • /
    • 2013
  • In this paper we present a robust duality theory for generalized convex programming problems under data uncertainty. Recently, Jeyakumar, Li and Lee [Nonlinear Analysis 75 (2012), no. 3, 1362-1373] established a robust duality theory for generalized convex programming problems in the face of data uncertainty. Furthermore, we extend results of Jeyakumar, Li and Lee for an uncertain multiobjective robust optimization problem.

OPTIMAL CONTROL ON SEMILINEAR RETARDED STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS DRIVEN BY POISSON JUMPS IN HILBERT SPACE

  • Nagarajan, Durga;Palanisamy, Muthukumar
    • 대한수학회보
    • /
    • 제55권2호
    • /
    • pp.479-497
    • /
    • 2018
  • This paper deals with an optimal control on semilinear stochastic functional differential equations with Poisson jumps in a Hilbert space. The existence of an optimal control is derived by the solution of proposed system which satisfies weakly sequentially compactness. Also the stochastic maximum principle for the optimal control is established by using spike variation technique of optimal control with a convex control domain in Hilbert space. Finally, an application of retarded type stochastic Burgers equation is given to illustrate the theory.

수직 투과 흐름이 있는 수평 다공질 유체층에서의 부력 효과 (The Buoyancy Effects in Horizontal Porous Layers with Vortical Through Flow)

  • 김민찬;김신;윤도영;김세훈
    • 에너지공학
    • /
    • 제10권3호
    • /
    • pp.266-271
    • /
    • 2001
  • 투과 흐름이 있는 수평 다공질 유체층에서 부력에 의하여 발생하는 자연대류 현상을 선형 안정성 이론을 사용하여 해석하였다. 다공질 층에서의 유동 특성을 나타내기 위하여 Dacrcy 법칙을 사용하였다. 선형 안정성 해석 결과를 근거로 자연대류 발생점 근처에서 비선형 해석을 하여 열전달 상관관계를 얻었다. 해석 결과 투과 흐름의 세기가 커짐에 따라 계는 점점 안정해 지고, Darcy-Rayleigh수의 변화에 따른 Nusselt수의 변화는 감소하였다.

  • PDF

A zonal hybrid approach coupling FNPT with OpenFOAM for modelling wave-structure interactions with action of current

  • Li, Qian;Wang, Jinghua;Yan, Shiqiang;Gong, Jiaye;Ma, Qingwei
    • Ocean Systems Engineering
    • /
    • 제8권4호
    • /
    • pp.381-407
    • /
    • 2018
  • This paper presents a hybrid numerical approach, which combines a two-phase Navier-Stokes model (NS) and the fully nonlinear potential theory (FNPT), for modelling wave-structure interaction. The former governs the computational domain near the structure, where the viscous and turbulent effects are significant, and is solved by OpenFOAM/InterDyMFoam which utilising the finite volume method (FVM) with a Volume of Fluid (VOF) for the phase identification. The latter covers the rest of the domain, where the fluid may be considered as incompressible, inviscid and irrotational, and solved by using the Quasi Arbitrary Lagrangian-Eulerian finite element method (QALE-FEM). These two models are weakly coupled using a zonal (spatially hierarchical) approach. Considering the inconsistence of the solutions at the boundaries between two different sub-domains governed by two fundamentally different models, a relaxation (transitional) zone is introduced, where the velocity, pressure and surface elevations are taken as the weighted summation of the solutions by two models. In order to tackle the challenges associated and maximise the computational efficiency, further developments of the QALE-FEM have been made. These include the derivation of an arbitrary Lagrangian-Eulerian FNPT and application of a robust gradient calculation scheme for estimating the velocity. The present hybrid model is applied to the numerical simulation of a fixed horizontal cylinder subjected to a unidirectional wave with or without following current. The convergence property, the optimisation of the relaxation zone, the accuracy and the computational efficiency are discussed. Although the idea of the weakly coupling using the zonal approach is not new, the present hybrid model is the first one to couple the QALE-FEM with OpenFOAM solver and/or to be applied to numerical simulate the wave-structure interaction with presence of current.

준해석적 방법을 통한 파라메트릭 횡동요 해석 (A Semi-Analytic Approach for Analysis of Parametric Roll)

  • 이재훈;김용환
    • 대한조선학회논문집
    • /
    • 제52권3호
    • /
    • pp.187-197
    • /
    • 2015
  • This study aims the development of a semi-analytic method for the parametric roll of large containerships advancing in longitudinal waves. A 1.5 Degree-of-Freedom(DOF) model is proposed to account the change of transverse stability induced by wave elevations and vertical motions (heave and pitch). By approximating the nonlinearity of restoring moment at large heel angles, the magnitude of roll amplitude is predicted as well as susceptibility check for parametric roll occurrence. In order to increase the accuracy of the prediction, the relationship between righting arm(GZ) and metacentric height(GM) is examined in the presence of incident waves, and then a new formula is proposed. Based on the linear approximation of the mean and first harmonic component of GM, the equation of parametric roll in irregular wave excitations is introduced, and the computational results of the proposed model are validated by comparing those of weakly nonlinear simulation based on an impulse-response-function method combined with strip theory. The present semi-analytic doesn’ t require heavy computational effort, so that it is very efficient particularly when numerous sea conditions for the analysis of parametric roll should be considered.