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ROBUST DUALITY FOR GENERALIZED INVEX

PROGRAMMING PROBLEMS

Moon Hee Kim

Abstract. In this paper we present a robust duality theory for gener-
alized convex programming problems under data uncertainty. Recently,
Jeyakumar, Li and Lee [Nonlinear Analysis 75 (2012), no. 3, 1362–1373]
established a robust duality theory for generalized convex programming
problems in the face of data uncertainty. Furthermore, we extend re-
sults of Jeyakumar, Li and Lee for an uncertain multiobjective robust
optimization problem.

1. Introduction

Consider the standard nonlinear programming problem with inequality con-
straints

(P) inf
x∈Rn

{f(x) : gi(x) <= 0, i = 1, . . . ,m},

where f : Rn → R and gi : R
n → R are continuously differentiable functions.

The problem in the face of data uncertainty in the constraints can be captured
by the following nonlinear programming problem:

(UP) inf
x∈Rn

{f(x) : gi(x, vi) <= 0, i = 1, . . . ,m},

where vi is an uncertain parameter and vi ∈ Vi for some convex compact set
Vi in R

q and gi : R
n×R

q → R is continuously differentiable. Robust optimiza-
tion, which has emerged as a powerful deterministic approach for studying
mathematical programming under uncertainty ([4]-[5], [6]), associates with the
uncertain program (UP) its robust counterpart [1],

(RP) inf
x∈Rn

{f(x) : gi(x, vi) <= 0, ∀vi ∈ Vi, i = 1, . . . ,m},

where the uncertain constraints are enforced for every possible value of the
parameters within their prescribed uncertainty sets Vi, i = 1, . . . ,m. Recently,
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Jeyakumar, Li and Lee [7] established a robust duality theory for generalized
convex programming problems in the face of data uncertainty. Furthermore,
we extend results of Jeyakumar, Li and Lee [7] for an uncertain multiobjective
robust optimization problem.

2. Optimality results

Consider an uncertain multiobjective robust optimization problem:

(MRP) Minimize (f1(x), . . . , fl(x))

subject to gj(x, vj) <= 0, ∀vj ∈ Vj , j = 1, . . . ,m,

where vi is an uncertain parameter and vi ∈ Vi for some convex compact set
Vi in R

q, fi : R
n → R, i = 1, . . . , l and gj : Rn × R

q → R, j = 1, . . . ,m, are
continuously differentiable.

Let F be the set of all the robust feasible solutions of (MRP) and J(x̄) =
{j | ∃vj ∈ Vj s.t. gj(x̄, vj) = 0, j = 1, . . . ,m}. A robust feasible solution x̄ of
(MRP) is a robust weakly efficient solution of (MRP) if there does not exist a
robust feasible solution x of (MRP) such that

fi(x) < fi(x̄), i = 1, . . . , l.

Now we define an Extended Mangasarian-Fromovitz constraint qualification
for (MRP) as follows:

There exists d ∈ R
n such that for any j ∈ J(x̄) and any vj ∈ Vj ,

∇1gj(x̄, vj)
T d < 0.

We use ∇1g to denote the derivative of g with respect to the first variable.
Now we present necessary optimality theorems for robust weakly efficient

solutions for (MRP).

Theorem 2.1 ([8]). Let x̄ ∈ F be a robust weakly efficient solution of (MRP).
Suppose that gj(x̄, ·) are concave on Vj , j = 1, . . . ,m. Then there exist λi >=
0, i = 1, . . . , l, µj >= 0, j = 1, . . . ,m, not all zero, and v̄j ∈ Vj , j = 1, . . . ,m
such that

l∑

i=1

λi∇fi(x̄) +

m∑

j=1

µj∇1gj(x̄, v̄j) = 0,(1)

µjgj(x̄, v̄j) = 0, j = 1, . . . ,m.(2)

Moreover, if we further assume that the Extended Mangasarian-Fromovitz con-

straint qualification holds, then there exist λi >= 0, i = 1, . . . , l, not all zero,

µj >= 0, j = 1, . . . ,m, and v̄j ∈ Vj , j = 1, . . . ,m such that (1) and (2) hold.

We provide a robust sufficient optimality condition under the following gen-
eralized η-convexity conditions at (x∗, vj) ∈ F ×Vj for each x ∈ R

n there exist
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αi : R
n × R

n → (0,+∞), i = 1, . . . , l, βj : R
n × R

n → (0,+∞), j = 1, . . . ,m,
η : Rn × R

n → R
n such that for each x ∈ R

n,

fi(x)− fi(x
∗) >= αi(x, x

∗)∇fi(x
∗)T η(x, x∗),(3)

gj(x, vj)− gj(x
∗, vj) >= βj(x, x

∗)∇1gj(x
∗, vj)

T η(x, x∗).(4)

We now present a robust sufficient optimality condition for the uncertain
programming problem.

Theorem 2.2. Let λi >= 0, i = 1, . . . , l, not all zero, µj >= 0, j = 1, . . . ,m,

v̄j ∈ Vj, j = 1, . . . ,m and x̄ ∈ F satisfy the following condition:

l∑

i=1

λi∇fi(x̄) +

m∑

j=1

µj∇1gj(x̄, v̄j) = 0,(5)

µjgj(x̄, v̄j) = 0, j = 1, . . . ,m.(6)

Suppose that for each x ∈ F there exist αi : R
n × R

n → (0,+∞), i = 1, . . . , l,
βj : Rn × R

n → (0,+∞), j = 1, . . . ,m such that (3) and (4) hold. Then x̄ is

a robust weakly efficient solution of (MRP).

Proof. Suppose that x̄ is not a robust weakly efficient solution for (MRP). Then
there exists x∗ ∈ F such that

fi(x
∗) < fi(x̄), i = 1, . . . , l, gj(x

∗, v̄j) <= 0.

By the generalized η-convexity of fi at x̄ ∈ F , there exists αi : Rn × R
n →

(0,+∞), i = 1, . . . , l such that

fi(x
∗)− fi(x̄) >= αi(x

∗, x̄)∇fi(x̄)
T η(x∗, x̄), i = 1, . . . , l.

Thus λi >= 0, i = 1, . . . , l, not all zero, implies that

αi(x
∗, x̄)

l∑

i=1

λi∇fi(x̄)
T η(x∗, x̄) < 0, i = 1, . . . , l.

Therefore from (5), we have

−αi(x
∗, x̄)

m∑

j=1

µj∇1gj(x̄, v̄j)
T η(x∗, x̄) < 0, i = 1, . . . , l.

By the generalized η-convexity of gj at (x̄, v̄j) ∈ F × Vj, there exists βj :
R

n × R
n → (0,+∞), j = 1, . . . ,m such that

−αi(x
∗, x̄)

m∑

j=1

µj

βj(x∗, x̄)
(gj(x

∗, v̄j)− gj(x̄, v̄j)) < 0, i = 1, . . . , l.

Hence µjgj(x
∗, v̄j) > µjgj(x̄, v̄j), j = 1, . . . ,m. Since µjgj(x̄, v̄j) = 0,

µjgj(x
∗, v̄j) > 0, j = 1, . . . ,m,

which contradicts the fact that µjgj(x
∗, v̄j) <= 0, j = 1, . . . ,m. �
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3. Duality results

In this section, we establish Wolfe type robust duality between (MRP) and
(WD).

(WD) Maximize


f1(u) +

m∑

j=1

µjgj(u, vj), . . . , fl(u) +

m∑

j=1

µjgj(u, vj)




subject to

l∑

i=1

λi∇1fi(u) +

m∑

j=1

µj∇1gj(u, vj) = 0,

λi >= 0, i = 1, . . . , l,

l∑

i=1

λi = 1,

µj >= 0, vj ∈ Vj , j = 1, . . . ,m.

Theorem 3.1 (Weak Duality). Let x be feasible for (MRP) and (x̄, v̄, λ, µ) be
feasible for (WD). Suppose that fi(·), i = 1, . . . , l and gj(·, v̄j), j = 1, . . . ,m
are convex and gj(x̄, ·) are concave on Vj. Then

(
f1(x), . . . , fl(x)

)
6<


f1(x̄) +

m∑

j=1

µjgj(x̄, v̄j), . . . , fl(x̄) +

m∑

j=1

µjgj(x̄, v̄j)


 .

Proof. Let x be feasible for (MRP) and (x̄, v̄, λ, µ) be feasible for (WD). Sup-
pose that fi(x) < fi(x̄) +

∑m

j=1
µjgj(x̄, v̄j). Since gj(x, v̄j) <= 0, µj >= 0, j =

1, . . . ,m,
∑m

j=1
µjgj(x, v̄j) <= 0,

fi(x) +
m∑

j=1

µjgj(x, v̄j) < fi(x̄) +
m∑

j=1

µjgj(x̄, v̄j).

Since fi(·), i = 1, . . . , l and gj(·, v̄j), j = 1, . . . ,m are convex,

fi(x)− fi(x̄) >= ∇fi(x̄)
T (x− x̄),

gi(x, v̄j)− gj(x̄, v̄j) >= ∇1gj(x̄, v̄j)
T (x− x̄).

Hence λi >= 0, i = 1, . . . , l,
∑l

i=1
λi = 1, µj >= 0, j = 1, . . . ,m,

0 >




l∑

i=1

λifi(x) +

m∑

j=1

µjgj(x, v̄j)


−




l∑

i=1

λifi(x̄) +

m∑

j=1

µjgj(x̄, v̄j)




>=




l∑

i=1

λi∇fi(x̄) +

m∑

j=1

µj∇1gj(x̄, v̄j)




T

(x − x̄).

Therefore,
[∑l

i=1
λi∇fi(x̄) +

∑m

j=1
µj∇1gj(x̄, v̄j)

]T
(x− x̄) < 0. This is a con-

tradiction, since
∑l

i=1
λi∇fi(x̄) +

∑m

j=1
µj∇1gj(x̄, v̄j) = 0. �
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Theorem 3.2 (Strong Duality). Let x̄ be a robust weakly efficient solution of

(MRP). Assume that the Extended Mangasarian-Fromovitz constraint quali-

fication holds. Then, there exists (v̄, λ̄, µ̄) such that (x̄, v̄, λ̄, µ̄) is feasible for

(WD) and the objective values of (MRP) and (WD) are equal. If fi(·), i =
1, . . . , l, gj(·, v̄j), j = 1, . . . ,m are convex at x̄ and gj(x̄, ·) are concave on Vj,

then (x̄, v̄, λ̄, µ̄) is a robust weakly efficient solution of (WD).

Proof. Since x̄ is a robust weakly efficient solution of (MRP) at which the
Extended Mangasarian-Fromovitz constraint qualification is satisfied, then by
Theorem 2.1, there exist λ̄i >= 0, i = 1, . . . , l, not all zero, µ̄j >= 0, j = 1, . . . ,m,
and v̄j ∈ Vj , j = 1, . . . ,m, such that

l∑

i=1

λ̄i∇1fi(x̄) +

m∑

j=1

µ̄j∇1gj(x̄, v̄j) = 0,

µ̄jgj(x̄, v̄j) = 0, j = 1, . . . ,m.

Thus (x̄, v̄, λ̄, µ̄) is feasible for (WD) and the objective values of (MRP) and
(WD) are equal. Moreover, fi(x̄) = fi(x̄) +

∑m

j=1
µ̄jgj(x̄, v̄j), i = 1, . . . , l. If

(x̄, v̄, λ̄, µ̄) is a weak duality, then there exists feasible (x̃, ṽ, λ̃, µ̃) for (WD) such
that

fi(x̄) +

m∑

j=1

µ̄jgj(x̄, v̄j) 6< fi(x̃) +

m∑

j=1

µ̃jgj(x̃, ṽj), i = 1, . . . , l.

Hence (x̄, v̄, λ̄, µ̄) is a (WD)-feasible, (x̄, v̄, λ̄, µ̄) is a robust weakly efficient
solution of (WD). �
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