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ROBUST DUALITY FOR GENERALIZED INVEX
PROGRAMMING PROBLEMS

MoonN Hee Kim

ABSTRACT. In this paper we present a robust duality theory for gener-
alized convex programming problems under data uncertainty. Recently,
Jeyakumar, Li and Lee [Nonlinear Analysis 75 (2012), no. 3, 1362-1373]
established a robust duality theory for generalized convex programming
problems in the face of data uncertainty. Furthermore, we extend re-
sults of Jeyakumar, Li and Lee for an uncertain multiobjective robust
optimization problem.

1. Introduction

Consider the standard nonlinear programming problem with inequality con-
straints

(P) Ilenﬂgn{f(z) 1gi(x) £0,i=1,...,m},

where f : R™ — R and g; : R®” — R are continuously differentiable functions.
The problem in the face of data uncertainty in the constraints can be captured
by the following nonlinear programming problem:

(UP) zleann{f(x) cgi(x,v) £0, i =1,...,m},

where v; is an uncertain parameter and v; € V; for some convex compact set
V; in R? and g; : R™ x R? — R is continuously differentiable. Robust optimiza-
tion, which has emerged as a powerful deterministic approach for studying
mathematical programming under uncertainty ([4]-[5], [6]), associates with the
uncertain program (UP) its robust counterpart [1],

(RP) lenﬂgn{f(x) :gi(xvvi) gov Y, Gvi; 1= 17'-'am}a

where the uncertain constraints are enforced for every possible value of the
parameters within their prescribed uncertainty sets V;, ¢ = 1,..., m. Recently,
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Jeyakumar, Li and Lee [7] established a robust duality theory for generalized
convex programming problems in the face of data uncertainty. Furthermore,
we extend results of Jeyakumar, Li and Lee [7] for an uncertain multiobjective
robust optimization problem.

2. Optimality results

Consider an uncertain multiobjective robust optimization problem:

(MRP) Minimize (fi(x),..., fi(z))
subject to  g;(x,v;) L0, Vo, €V;, j=1,...,m,

where v; is an uncertain parameter and v; € V; for some convex compact set
ViinRe, f; :R" =R, i=1,...,land g; : R" xR? = R, j=1,...,m, are
continuously differentiable.

Let F be the set of all the robust feasible solutions of (MRP) and J(Z) =
{j | Iv; €V st. gj(Z,v;) =0,j =1,...,m}. A robust feasible solution Z of
(MRP) is a robust weakly efficient solution of (MRP) if there does not exist a
robust feasible solution x of (MRP) such that

Now we define an Extended Mangasarian-Fromovitz constraint qualification

for (MRP) as follows:
There exists d € R™ such that for any j € J(Z) and any v; € V;,

V1gj(.i', ’Uj)Td < 0.

We use Vg to denote the derivative of g with respect to the first variable.
Now we present necessary optimality theorems for robust weakly efficient
solutions for (MRP).

Theorem 2.1 ([8]). Let T € F be a robust weakly efficient solution of (MRP).
Suppose that g;(Z,-) are concave on V;, j =1,...,m. Then there exist \; =
0, i=1,...,01, uy; 20, 5=1,...,m, not all zero, and v; € V;, j =1 m
such that

geeey

l m
(1) Z/\Z—Vfi(f)wLZulegj(:E,ﬁj) :0,
i=1 j=1
(2) 1;igi(Z,05) =0, j=1,...,m.
Moreover, if we further assume that the Extended Mangasarian-Fromovitz con-

straint qualification holds, then there exist \; =2 0, ¢ = 1,...,1, not all zero,
w20, j=1,...,m, and v; € V;, j=1,...,m such that (1) and (2) hold.

We provide a robust sufficient optimality condition under the following gen-
eralized n-convexity conditions at (x*,v;) € F x V; for each x € R™ there exist
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a; :R" X R" = (0,400), i =1,...,1, ; : R" xR" = (0,4+00), j=1,...,m,
7 : R™ x R™ — R" such that for each z € R™,
(3) fi(x) = fil@") = ai(z, a*)V fi(@*) (e, 2*),
(4) 9;(x,vj) = g; (", vj) 2 Bj(x,a")V1g; («*, v;) 'z, 2*).

We now present a robust sufficient optimality condition for the uncertain
programming problem.

Theorem 2.2. Let \; 20, i =1,...,1, not all zero, p; 20, 5 =1,...,m,
v; €V, j=1,...,m and z € F satisfy the following condition:

l m
(5) D ONVE@) + Y Vigi(E,v;) =0,
i=1 =1
(6) ,Ltjgj(i',’l_)j):o, ]:Lvm

Suppose that for each x € F there exist ; : R™ x R™ — (0,+00), i =1,...,1,
B :R" xR™ — (0,+00), j =1,...,m such that (3) and (4) hold. Then % is
a robust weakly efficient solution of (MRP).

Proof. Suppose that T is not a robust weakly efficient solution for (MRP). Then
there exists * € F' such that

filz®) < fi(®), i=1,...,1, g;(z",0;) £0.
By the generalized n-convexity of f; at £ € F', there exists a; : R™ x R" —
(0,400), i =1,...,1 such that
fi(z*) = fi(Z) = o (z*, 2)V i (2) T n(a*,2), i=1,...,1
Thus A\; =20, ¢ =1,...,1, not all zero, implies that

!
a; (%, T) Z NV i@ n(x*,2) <0, i=1,...,1
i=1
Therefore from (5), we have

m
7041'(:6*’ i') Z,Ujvlgj(i', 1_)j>T77(z*7j> <0,:i=1,..., l.
j=1
By the generalized n-convexity of g; at (Z,7;) € F x Vj, there exists 3; :
R™ x R™ = (0,400), j =1,...,m such that
m

—ai(x*,a’c)z m(gj(x*,ﬁj) —gj(.i',?jj)) <0,i=1,...,1.

Hence w;g;(z*,0;) > pig;(%,0;), j=1,...,m. Since u;g;(%,v;) =0,

j=1

g (x*,0;) >0, j=1,....m,
which contradicts the fact that p;g;(xz*,9;) £0, j=1,...,m. 0
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3. Duality results

In this section, we establish Wolfe type robust duality between (MRP) and
(WD).

(WD) Maximize | f1(u)+ Z wigi(w,v5), ..., fi(u) + ZMJQJ u,vj)

subject to Z/\ Vifi(u) + Zujvlg] (u,v5) =0,

=1 j=1

Theorem 3.1 (Weak Duality). Let = be feasible for (MRP) and (%,
feasible for (WD). Suppose that fi(-), i =1,...,1 and g;(-,7;), j = .,m
are convex and g;(Z,-) are concave on V;. Then

(fl(w)aafl(‘r)) % f1(f)+ZMj9j(§3a5j)a---,fl +ZMJ93 z UJ)

j=1

Proof. Let x be feasible for (MRP) and (Z, 9, A, u) be feasible for (WD). Sup-
pose that fi(z) < fi(z) + 2271, pjg(%,9;). Since g;(x,7;) <0, p; 20, j =
Lo.oymy 3000 pjgi(x,v;) 0,

2)+ Y pigi(@,0;) < fi(®) + Y 1ig;(E, ;).
j=1 j=1
Since f;(+), ¢ =1,...,l and g;(-,9;), j =1,...,m are convex,
filw) = fi(@) 2 Vfi(@)" (z - ),
gi(z,v;) — 9;(%,0;) 2 V1g;(z,0;)" (x — T).
Hence \; 20, i=1,...,1, b Ni=1, g3 20, j=1,...,m,

[ l m
0> ZAz‘fi(x)ﬁLZMjgj(za”J Z)‘fz JFZUJQJ z, ;)
=1 j=1

T

. i
2 (Y NVA@) + Y 1 Vig (@ 0)| (@ - 2).
i=1 j=1

T
Therefore, [Zi VNV Fi(®) + 220 15 Vagy(7,95)| (¢ —Z) < 0. This is a con-
tradiction, since Y\, A,V fi(Z) + >y 1iV1g(7, ;) = 0. O
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Theorem 3.2 (Strong Duality). Let T be a robust weakly efficient solution of
(MRP). Assume that the Extended Mangasarian-Fromovitz constraint quali-
fication holds. Then, there exists (0, \, i) such that (T,0,\, i) is feasible for
(WD) and the objective values of (MRP) and (WD) are equal. If fi(-), i =
1,...,0, g¢i(,75), j=1,...,m are convexr at T and g;(Z,-) are concave on V;j,
then (Z,9, \, i) is a robust weakly efficient solution of (WD).

Proof. Since Z is a robust weakly efficient solution of (MRP) at which the
Extended Mangasarian-Fromovitz constraint qualification is satisfied, then by
Theorem 2.1, there exist \; 2 0, 4 = 1,...,l, not all zero, fi; 20, j = 1,...,m,
and v; € V;j, j=1,...,m, such that

Z)\ Vifi(z +Z,ujvlgj($ v;) =0,

j=1
,L_ngj(f,’l_)j> = 0, j = 1, ceey, M.
Thus (Z, 9, \, i) is feasible for (WD) and the objective values of (MRP) and
(WD) are equal. Moreover, fi(Z) = fi(Z) + 271, fijg;(Z, vj) i=1,...,0l. If

(Z,0, \, i) is a weak duality, then there exists feasible (2,7, )\, i) for (WD) such
that

Z ;g (Z,95) £ fi(@ +ZM39390U3) 1=1,...,1L
j=

Jj=1

Hence (7,9, )\, fi) is a (WD)-feasible, (Z,,\, 1) is a robust weakly efficient
solution of (WD). O
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