• 제목/요약/키워드: weak multiplication module

검색결과 4건 처리시간 0.023초

Direct sum decompositions of indecomposable injective modules

  • Lee, Sang-Cheol
    • 대한수학회보
    • /
    • 제35권1호
    • /
    • pp.33-43
    • /
    • 1998
  • Matlis posed the following question in 1958: if N is a direct summand of a direct sum M of indecomposable injectives, then is N itself a direct sum of indecomposable innjectives\ulcorner It will be proved that the Matlis problem has an affirmative answer when M is a multiplication module, and that a weaker condition then that of M being a multiplication module can be given to module M when M is a countable direct sum of indecomposable injectives.

  • PDF

A HOMOLOGICAL CHARACTERIZATION OF PRÜFER v-MULTIPLICATION RINGS

  • Zhang, Xiaolei
    • 대한수학회보
    • /
    • 제59권1호
    • /
    • pp.213-226
    • /
    • 2022
  • Let R be a ring and M an R-module. Then M is said to be regular w-flat provided that the natural homomorphism I ⊗R M → R ⊗R M is a w-monomorphism for any regular ideal I. We distinguish regular w-flat modules from regular flat modules and w-flat modules by idealization constructions. Then we give some characterizations of total quotient rings and Prüfer v-multiplication rings (PvMRs for short) utilizing the homological properties of regular w-flat modules.

THE w-WEAK GLOBAL DIMENSION OF COMMUTATIVE RINGS

  • WANG, FANGGUI;QIAO, LEI
    • 대한수학회보
    • /
    • 제52권4호
    • /
    • pp.1327-1338
    • /
    • 2015
  • In this paper, we introduce and study the w-weak global dimension w-w.gl.dim(R) of a commutative ring R. As an application, it is shown that an integral domain R is a $Pr\ddot{u}fer$ v-multiplication domain if and only if w-w.gl.dim(R) ${\leq}1$. We also show that there is a large class of domains in which Hilbert's syzygy Theorem for the w-weak global dimension does not hold. Namely, we prove that if R is an integral domain (but not a field) for which the polynomial ring R[x] is w-coherent, then w-w.gl.dim(R[x]) = w-w.gl.dim(R).

REGULARITY RELATIVE TO A HEREDITARY TORSION THEORY FOR MODULES OVER A COMMUTATIVE RING

  • Qiao, Lei;Zuo, Kai
    • 대한수학회지
    • /
    • 제59권4호
    • /
    • pp.821-841
    • /
    • 2022
  • In this paper, we introduce and study regular rings relative to the hereditary torsion theory w (a special case of a well-centered torsion theory over a commutative ring), called w-regular rings. We focus mainly on the w-regularity for w-coherent rings and w-Noetherian rings. In particular, it is shown that the w-coherent w-regular domains are exactly the Prüfer v-multiplication domains and that an integral domain is w-Noetherian and w-regular if and only if it is a Krull domain. We also prove the w-analogue of the global version of the Serre-Auslander-Buchsbaum Theorem. Among other things, we show that every w-Noetherian w-regular ring is the direct sum of a finite number of Krull domains. Finally, we obtain that the global weak w-projective dimension of a w-Noetherian ring is 0, 1, or ∞.