• Title/Summary/Keyword: waypoint-tracking control

Search Result 13, Processing Time 0.031 seconds

Study on a Waypoint Tracking Algorithm for Unmanned Surface Vehicle (USV) (무인수상선을 위한 경유점 추적 제어 알고리즘에 관한 연구)

  • Son, Nam-Sun;Yoon, Hyeon-Kyu
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • A waypoint tracking algorithm(WTA) is designed for Unmanned Surface Vehicle(USV) in which water-jet system is installed for propulsion To control the heading of USV for waypoint tracking, the steering nozzle of water-jet need, to be controlled. Firstly, target heading is calculated by using the position information of waypoints input from the land control center. Secondly, the command for the steering nozzle of water-jet is calculated in real time by using the heading and the rate-of-turn( ROT) from magnetic compass, In this study, in order to consider the drift angle due to external disturbance such as wind and wave, the course of ground( COG) can be used instead of heading at higher speed than a certain value, To test the performance of newly-designed WTA, the tests were carried out in actual sea area near Gwang-an bridge of Busan. In this paper, the sea trial test results from WTA are analyzed and compared with those from manual control and those from commercial controller.

Waypoint Tracking of Large Diameter Unmanned Underwater Vehicles with X-stern Configuration (X-stern 배열을 가진 대형급 무인잠수정의 경로점 추적)

  • Kim, Do Wan;Kim, Moon Hwan;Park, Ho-Gyu;Kim, Tae-Yeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.387-393
    • /
    • 2017
  • This paper focuses on a horizontal waypoint tracking and a speed control of large diameter unmanned underwater vehicles (LDUUVs) with X-stern configuration plane. The concerned design problem is converted into an asymptotic stabilization of the error dynamics with respect to the desired yaw angle and surge speed. It is proved that the error dynamics under the proposed control scheme based on the linear control and the feedback linearization can be considered as a cascade system; the cascade system is asymptotically stable if its nominal systems are so. This stability connection enables to separately deal with the waypoint tracking problem and the speed control one. By using the sector nonlinearity, the nominal system with nonlinearities is modeled as a polytopic linear parameter varying (LPV) system with parametric uncertainties. Then, sufficient linear matrix inequality (LMI) conditions for its asymptotic stabilizability are derived in the sense of Lyapunov stability criterion. An example is given to show the validity of the proposed methodology.

Steering Characteristics of an Autonomous Tractor with Variable Distances to the Waypoint

  • Kim, Sang Cheol;Hong, Yeong Gi;Kim, Kook Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • Autonomous agricultural machines that are operated in small-scale farmland frequently experience turning and changes in direction. Thus, unlike when they are operated in large-scale farmland, the steering control systems need to be controlled precisely so that travel errors can be minimized. This study aims to develop a control algorithm for improving the path tracking performance of a steering system by analyzing the effect of the setting of the waypoint, which serves as the reference point for steering when an autonomous agricultural machine moves along a path or a coordinate, on control errors. A simulation was performed by modeling a 26-hp tractor steering system and by applying the equations of motion of a tractor, with the use of a computer. Path tracking errors could be reduced using an algorithm which sets the waypoint for steering on a travel path depending on the radius of curvature of the path and which then controls the speed and steering angle of the vehicle, rather than by changing the steering speed or steering ratio which are dependent on mechanical performance.

Robust Adaptive Nonlinear Control for Tilt-Rotor UAV

  • Yun, Han-Soo;Ha, Cheol-Keun;Kim, Byoung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.57-62
    • /
    • 2004
  • This paper deals with a waypoint trajectory following problem for the tilt-rotor UAV under development in Korea (TR-KUAV). In this problem, dynamic model inversion based on the linearized model and Sigma-Phi neural network with adaptive weight update are involved to realize the waypoint following algorithm for the vehicle in the helicopter flight mode (nacelle angle=0 deg). This algorithms consists of two main parts: outer-loop system as a command generator and inner-loop system as stabilizing controller. In this waypoint following problem, the position information in the inertial axis is given to the outer-loop system. From this information, Attitude Command/Attitude Hold logic in the longitudinal channel and Rate Command/Attitude Hold logic in the lateral channel are realized in the inner-loop part of the overall structure of the waypoint following algorithm. The nonlinear simulation based on the TR-KUAV is carried out to evaluate the stability and performance of the algorithm. From the numerical simulation results, the algorithm shows very good tracking performance of passing the waypoints given. Especially, it is observed that ACAH/RCAH logic in the inner-loop has the satisfactory performance due to adaptive neural network in spite of the model error coming from the linear model based inversion.

  • PDF

Rotorcraft Waypoint Guidance Design Using SDRE Controller

  • Yang, Chang-Deok;Kim, Chang-Joo;Yang, Soo-Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.12-22
    • /
    • 2009
  • This paper deals with the State-Dependent Riccati Equation (SDRE) Technique for the design of rotorcraft waypoint guidance. To generate the flight trajectory through multiple waypoints, we use the trigonometric spline. The controller design and its validation is based upon a level 2 simulation rotorcraft model and the designed SDRE controller is applied to the trajectory tracking problems. To verify the designed guidance law, the simulation environment of high fidelity rotorcraft model is developed using three independent PCs. This paper focuses on the validation of rotorcraft waypoint guidance law which is designed by using SDRE Controller.

Development and Flight Test of Unmanned Autonomous Rotor Navigation System Based on Virtual Instrumentation Platform (Virtual Instrumentation 플랫폼 기반 무인 자율 로터 항법시스템 개발 및 비행시험)

  • Lee, Byoung-Jin;Park, Sang-Jun;Lee, Seung-Jun;Kim, Chang-Joo;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.833-842
    • /
    • 2011
  • The objectives of this research are development of guidance, navigation and control system for RUAV on virtual instrumentation and real flight test. For this research, the system is divided to DAQ (data acquisition) section, actuator section and controller section. And the hardware and software on each sections are realized on LabVIEW base. Waypoint guidance and control of auto flight are realized using PID gain tuning and waypoint vector tracking guidance algorism. For safe flight test, auto/manual switching module isolated from FCS (Flight Control System) is developed. By using the switch module, swift mode change was achieved during emergency flight case. Consequently, a meter level error of flight performance is achieved.

Waypoints Guidance of the Nonlinear Helicopter using the SDRE Technique (SDRE 기법을 이용한 비선형 헬리콥터의 비행 경로점 유도제어)

  • Kim, Min-Jae;Yang, Chang-Deok;Hong, Ji-Seung;Kim, Chang-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.922-929
    • /
    • 2009
  • This paper deals with the State-Dependent Riccati Equation (SDRE) Technique for the design of helicopter nonlinear waypoint guidance controller. To generate the flight guidance through multiple waypoints, we use the trigonometric spline. The controller design and its validation is based upon a level 2 simulation helicopter model and the designed SDRE controller is applied to the trajectory tracking problems. To validate the designed SDRE controller, the simulation environment of high fidelity helicopter model is developed using three independent computers. This paper focuses on the validation the present SDRE controller through the helicopter waypoint guidance simulation.

T-S Fuzzy Model-based Waypoints-Tracking Control of Underwater Vehicles (무인잠수정의 T-S 퍼지 모델기반 경로점 유도제어)

  • Kim, Do-Wan;Lee, Ho-Jae;Sur, Joo-No
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.526-530
    • /
    • 2011
  • This paper presents a new fuzzy model-based design approach for waypoints-tracking control of nonlinear underwater vehicles (UUVs) on a horizontal plane. The waypoints-tracking control problem is converted into the stabilization one for the error model between the given nonlinear UUV and the waypoints. By using the sector nonlinearity, the error model is modeled in Takagi-Sugeno's form. We then derive stabilization conditions for the error model in the format of linear matrix inequality. A numerical simulation is provided to illustrate the effectiveness of the proposed methodology.

Design and Flight Test of Path Following System for an Unmanned Airship (무인 비행선의 자동 경로 추종 시스템 개발 및 비행시험)

  • Jung, Kyun-Myung;Sung, Jae-Min;Kim, Byoung-Soo;Je, Jeong-Hyeong;Lee, Sung-Gun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.498-509
    • /
    • 2010
  • In this paper, a waypoint guidance law Line Tracking algorithm is designed for testing an Unmanned Airship. In order to verify, we develop an autonomous flight control and test system of unmanned airship. The flight test system is composed FCC (Flight Control Computer), GCS (Ground Control System), Autopilot & Guidance program, GUI (Graphic User Interface) based analysis program, and Test Log Sheet for the management of flight test data. It contains flight test results of single-path & multi-path following, one point continuation turn, LOS guidance, and safe mode for emergency.

Integrated Design of Rotary UAV Guidance and Control Systems Utilizing Sliding Mode Control Technique

  • Hong, You-Kyung;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.90-98
    • /
    • 2012
  • In this paper, the Integrated Guidance and Control (IGC) law is proposed for the Rotary Unmanned Aerial Vehicle (RUAV). The objective of the IGC law is to consider the nonlinear dynamic characteristics of the RUAV and to design a guidance law which takes into consideration the nonlinear relationship between kinematics and dynamics. In order to control the RUAV system, sliding mode control scheme is adopted. As the RUAV is an under-actuated system, a slack variable approach is used to generate the available control inputs. Through the Lyapunov stability theorem, the stability of the proposed IGC law is proved. In order to verify the performance of the IGC law, numerical simulations are performed for waypoint tracking missions.