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Abstract 

This paper deals with the State-Dependent Riccati Equation (SDRE) Technique 

for the design of rotorcraft waypoint guidance. To generate the flight trajectory 

through multiple waypoints, we use the trigonometric spline. The controller design and 

its validation is based upon a level 2 simulation rotorcraft model and the designed 

SDRE controller is applied to the trajectory tracking problems. To verify the designed 

guidance law, the simulation environment of high fidelity rotorcraft model is developed 

using three independent PCs. This paper focuses on the validation of rotorcraft 

waypoint guidance law which is designed by using SDRE Controller. 
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Introduction 

The State-Dependent Riccati Equation (SDRE) technique is based on the Linear 

Quadratic Regulator (LQR) method and it allows us to design the controllers for the 

nonlinear system with the same technique used in its linear counterparts [1,2]. The SDRE 

technique basically differs from the LQR method in two points. First, the SDRE technique 

demands a linear system-like structure with State-Dependent Coefficients (SDC) form of 

equation of motion. But the general multi-variable nonlinear systems like rotorcraft do not 

always conform to this structure. Also, it is well known that the SDC form for multi-

variable systems is not unique and there is no general method for its derivation. Second, the 

LQR method requires off-line solution of the Algebraic Riccati Equation (ARE). However, to 

calculate the feedback control in on-line, the SDRE method needs the iterative solution of 

the ARE because the state and control derivative matrices of derived SDC form are 

generally time-varying. Therefore an efficient numerical solution of the Algebraic Riccati 

Equation (ARE) is crucial for the system performance.  
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Langson et. al. [3] presented the experimental implementation of the SDRE controller 
for a third order nonlinear system. In its setup, one 75 MHz Pentium computer was used to 
simulate the plant dynamics, and design the SDRE controller with 100Hz sampling rate. P. K. 
Menon et. al. [4] applied the SDRE controller to the missile control. To solve the ARE, 
various numerical methods and PC processors are used with 20 kHz sampling rate. Above 
studies were made it possible to implement of SDRE in the real-time because comparatively 
simple models were used. However, the SDRE technique demands high computing power 
when it is applied to complex dynamic models. In this regard, Kim et. al. [5] applied the 
indirect method to the various rotorcraft model to investigate the relative computational 
burden. In the Ref. [6] Bogdanov et. al. applied the SDRE technique to the small scale 
rotorcraft and they represented its flight test in hovering and low flight speed region. 

The design of flight path for unmanned aircraft is one of the important issues. It should be 
shortest path in time and satisfied with the aircraft dynamics. In the Ref. [7], Beard et. al. design 
the flight path using voronoi diagram. This method doesn’t require the high computation but it 
needs a post-processing to convert waypoints to flight path. Bakaric et. al. [8] suggest the line 
of sight with heading correction method. They applied it to the underwater vehicle having simple 
dynamics with low forward speed. Nagi [9] and Rodrigues [10] present the trigonometric 
interpolating curve to generate the trajectory through multiple waypoints. This curve is obtained 
by putting together smaller pieces (spline segments). Since each piece can be computed 
separately, it can cope with unpredictable changes of waypoint, like the appearance of sudden 
obstacles. And one may reduce the computation by selecting the proper time interval. 

Present study uses the trigonometric interpolating curve to generate flight path 
through multiple waypoints. And we apply designed flight path to the trajectory tracking 
controller using SDRE technique. The SDRE controller is verified on the simulation 
environment through waypoint guidance simulation. The level 2 simulation rotorcraft model 
[11] is used to design and verify the SDRE controller. 

SDRE Technique 

2.1 SDRE Controller Design 

The general infinite-horizon nonlinear regulator problem can be represented as: 

min dttRututQxtxtuxJ
t

TT∫
∞

+=
0

)()()()(
2
1),,(                     (1) 

s.t uxBxfx )()( +=&                                   (2) 

where, 0,0 >≥ RQ  
The SDRE technique requires the SDC form as shown in Eq. (3) with which the SDRE method finds 

controller gain by assuming the matrices, )(xA  and )(xB , are locally constant and by solving the ARE. 

uxBxxAx )()( +=&                        (3) 

If )}(),({ xBxA  in Eq. (3) is a controllable pair, the procedure of the SDRE technique is 

summarized as follows. 
( i ) Drive the SDC form as show in Eq. (3) using a SDC factorization. 
( ii ) Solve the State-Dependent Algebraic Riccati Equation (SDRE) to obtain 0)( ≥tP , where 

P  is function of x  

  0)()()()( 1 =+−+ − QPxBRxPBPxAxPA TT                          (4) 

( iii ) Construct the nonlinear feedback controller 

)()( 1 tPxBRtKxu T−−=−=                         (5) 
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On the contrast to the LQR solution, the SDRE technique repeatedly requires the SDC 
factorization and the solution of state-dependent ARE at each time of control engagement. 
Therefore, the performance of SDRE controller depends on the derivation of SDC form and 
efficient solution of ARE.  

A unified approach to obtain the SDC factorization for a general nonlinear system is 
impossible because the SDC form for a multivariable system is not unique [2]. Any function, 

1)( Cxf ∈ , can be expressed as in the form of Eq. (6) but the condition represented in Eq. (7) 

should be meet to reduce a dynamic system to the SDC form. 

)()()( xfxxAxf ∆+=                                                     (6) 
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                                             (7) 

And in case, the system dynamics of control-affine system can be factorized into two 
different ways, any combination of these would generate a SDC form. But because the 
control inputs are calculated when the stability is guaranteed, the matrix A, B cannot be 
selected randomly.  

The numerical efficiency in solving the ARE in Eq. (4) is crucial especially for online 
implementation of the SDRE controller. In the case of the rotorcraft, the dynamic system is 
inherently unstable. Therefore the numerical solution of the Lyapunov equation needs the 
initial estimation if the gain matrix K  with which the resultant system matrix BKA −  
becomes Hurwitz. 

2.2 Numerical Methods 

In the previous research [6], A. Bogdanov et. al. proposed a numerical SDC 
factorization method for nonlinear rotorcraft dynamic model. This paper uses the modified 
version of the SDC factorization proposed by Kim et. al. [2], by considering both system 
equilibrium states and kinematical offset in forcing functions. The nonlinear equation of motion 
at an arbitrary time instant and that at an equilibrium condition can be written as following. 

),( uxFx =&                             (8) 

const),( 000 == uxFx&                             (9) 

Where, 00,ux  denote equilibrium states and controls, respectively. 

Even in an equilibrium state, the value of forcing function, ),( 00 uxF , is generally nonzero. 

The consideration on the state variation from the equilibrium condition and the Taylor series 
expansion of motion equation around the equilibrium states and controls enable us to derive 
the motion equation for the perturbed states and controls as shown in Eq. (12). 

uuuxxx ~,~
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Where, )~,~( uxHOT is high order term in x~  and u~ . 

As previous mentioned, an SDC form can be derived when the higher order term is a 
function of state variables only as in a control affine system like Eq.(2) 

Then, the SDC factorization can be carried out by using the following steps [2, 12]. 
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( i ) Control derivative matrix 
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( ii ) State derivative matrix 
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Where, uxBuxFxf ~)(),(~)~(
~

−=  

The control derivative matrix )~(xB  can be approximated using a finite difference method. 

And the state derivative matrix )~(xA  can be computed using function values around x~ . If we use 

2N-points around NRx ∈~ , the matrix can be computed using the following formula. 
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As mentioned in previous section, the SDRE technique requires the derivation of the 

SDC form of motion equations and the solution of the state-dependent ARE. There are the 

causes of high computation burden. Many numerical methods to solve the ARE are being 

developed but the selection from the existing one is not simple since the efficiency and 

applicability of each algorithms depend on numerous factors. 

H.T Bank and K. Ito proposed a hybrid method to solve the ARE for a system with a 

large size [13]. In their method, the initial feedback gain K  is obtained from the limiting 

solution of Chandrasekhar system and the result is refined through the Newton-Kleinman 

algorithm. Since the system dynamics of the rotorcraft are inherently unstable, the initial 

feedback system can be unstable. The solution of the Chandrasekhar system provides a stable 

feedback gain matrix with suitable chosen weighting matrices even for an unstable system. 
The Chandrasekhar system for initial gain can be written as following and the suitable 

time integrator such as Runge-Kutta algorithm can be used for resolving the initial value 
problem. 
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Where, A  and B  are the state derivative matrix and control derivative matrix of SDC form, 
respectively. 

The state-dependent ARE shown in Eq. (4) can be solved by applying the Newton-
Kleinman algorithm for following transformed system [2, 12]. 

0=+++

−=

QRKKPSPS

BKAS
TT                   (16) 
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If we obtain a stable pair },{ 0 BBKA −  by solving Chandrasekhar system, the control 

gain matrix is iteratively obtained by applying the Newton-Kleinman algorithm using the 
following equations ),,1( maxii L= . 

ii BKAS −=                          (17) 

i
T
iiii

T
i RKKQSPPS −−=+                     (18) 

PPi
i

=
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lim                      (19) 

where, i
T
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1

−
+ =  

Waypoint Guidance Design 

3.1 Rotorcraft Model 

The rotorcraft flight dynamic model used in this study is based on the previous 
research in Ref. [11]. Since the flap and inflow states are the unobservable states that cannot 
measured or estimated, these states are considered as hidden or unobservable states during 
the controller design[2,12]. Therefore, the rotorcraft model for controller design is defined by 
using the rigid body states as shown in Eq. (20) and the rotor states corresponding to flap 
motion and inflow are estimated by using the rotor trim solution. However, the level 2 
simulation model developed in Ref. [11] is used as the validation model. 

],,,,,,,,,,,[ hyxrqpwvux NER ψθφ=                         (20) 

3.2 Trajectory Planning 

In this work, we use the trigonometric interpolating curve to generate curves in the 
plane. And it is obtained by piecing together segments which are convex combinations of 
circular arcs or straight line segments [9, 10]. The classical interpolating and smoothing 
cubic splines requires the recalculation of the entire spline function when a single data point 
is changed. This can be a severe drawback when implementing real trajectory planning 
under the presence of unpredictable changes of waypoint, like the appearance of sudden 
obstacles. Since the trigonometric splines have the property that each of its spline segments 
depends only on the data in its neighborhood, they can overcome this perceived difficulty. 
Only four points are used to its computation. If one wants to change a particular interpolation 
point then at most two segments on the left and two segments on the right have to be 
computed instead of computing everything from the beginning. Another property of this 
curve is that it can reduce the computation by selecting the proper time interval t∆  
( ]1,0[∈∆t ). Fig. (1) shows the calculation point with various time interval. 

The spline segment connecting point iW (at 0=t ) to point 1+iW (at 1=t ) is denoted by 

)(tSi  and it is given by following convex combination of two other curves, )(tLi , )(tTi . 

)()2/(sin)()2/(cos)( 22 tTttLttS iii ππ +=      (21) 

Where, i  is number of waypoints. 
The component )(tLi  calculated by using the waypoints iW , 1+iW  and 1−iW . If the points iW , 

1+iW  and 1−iW  define a straight line, 0=× vu
rr

, then )(tLi is the straight line segment connecting iW (at 

0=t ) to point 1+iW (at 1=t ) as shown in Eq. (22). Where, 1−−= ii WWu
r

 and ii WWv −= +1
r

. 
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calculation point when ∆ t=0.04
calculation point when ∆ t=0.2
waypoint

 
Fig. 1. Calculation point with time interval 

Otherwise, consider the circle defined by the three points and let )(tLi  be the circular arc, 0≠× vu
rr

, 

joining iW (at 0=t ) to point 1+iW (at 1=t ) that does not contain 1−iW  and it can be written as Eq. (23). 
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Where, Lm is the center of circle which passes through points iW , 1+iW  and 1−iW . The components 

La
r

 and Lb
r

 is defined by Li mW − , Li mW −+1 , respectively and Lθ  is a angle between La
r

 and Lb
r

. 

The previous algorithm (for )(tLi ), Eq. (22) and Eq. (23), is also implemented to compute 

)(tTi  but it uses the points iW , 1+iW  and 2+iW  instead of iW , 1+iW  and 1−iW . If the tree point iW , 

1+iW  and 2+iW  are defined straight line, we use Eq. (24). Otherwise, we use Eq. (25). 
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Where, Tm  is the center of circle which passes three points. TiT mWa −=
r

, TiL mWb −= +1
r

, Tθ  is a 

angle between Ta
r

 and Tb
r

. 

In this manner, trigonometric interpolating curve is constructed from 1−n  segments. Each 
segment is defined as the convex combination of two overlapping circular arcs or line segments 
using the neighboring points in the data sequence as shown in Fig. (2). For this reason, the 
construction of the first and last segments requires the extension of the data sequence by the 
points 0W  and 1+nW . In this work we calculate the additional points via the following equation. 
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Fig. 2. Trigonometric interpolating curve       Fig. 3. Description of bob-up/down, acc/de maneuver 
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In the present study, we define the additional maneuver attributes, bob-up / bob-down 
maneuver and acceleration / deceleration maneuver, to generate the flight guidance in 3-dimentsion. 
The trigonometric functions [2, 5] are utilized to define these maneuver trajectory because of its 
smoothness and simplicity. The height variations of bob-up, bob-down maneuver and forward speed 
changes of acceleration and deceleration maneuver are described as following formula Eq. (27). 

[ ])cos(93cos(8
0.16

)(
)( max tt

x
tx ππ −+

∆
=∆    (27) 

Where, 10)/()( ≤≤−−= tttttt entryfinishentry  

The time, entryt  and finisht , denote the entry and finish time of each maneuver and 

max)( x∆  is the maximum variation in state variables. 

Applications 

SDRE technique was applied to the waypoint guidance for the Bo-105 rotorcraft 
configuration. The quadratic cost function used in this study is defined by penalizing the 
trajectory deviation from the target trajectory and the additional control effort from the 
initial trim controls. The quadratic cost function with no terminal cost is implemented and 
any system constraints are not imposed for the simplicity of analysises. 
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Where, 

Rx  and ettx arg  are reduced rigid body states and target states, respectively. 
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The target states, ettx arg , are set to be the trim states except for those which need the 

description of their time variation for a specific maneuver. 
The control weighting matrix, R , and the state weighting matrix, Q , used in this study 

consist of the components listed in Table 1, 2, respectively. To verify the SDRE controller 
through the waypoint guidance simulation, we use the simulation environment which is 
comprised of three independent PCs. 

Table 1. Control weighting matrix 

 0δr  
C

r
1δ  

S
r

1δ  
TR

rδ  

Bob-up ⋅ bob-

down 
1.0e+04 3.0e+05 5.0e+05 2.0e+04 

Accel. ⋅ De. 

maneuver 
1.5e+04 1.0e+05 1.0e+04 4.0e+04 

Waypoint tracking 2.0e+04 5.3e+05 5.3e+05 5.0e+04 



Rotorcraft Waypoint Guidance Design Using SDRE Controller                             19 
 

Figure 4 shows simulation environment used in this study. The artificial rotorcraft 
model using the Level 2 rotor model in Ref. [11] is implemented in PC1, which receives 
control inputs calculated by the SDRE controller in PC2 and sends flight state information to 
PC2 and PC3. The flight control computer (PC2: FCC) updates the feedback gain on the 
artificial rotorcraft after solving the SDC factorization and the ARE. 

 

Fig. 4. Simulation environment 

Table 2. State weighting matrix 

 uq  vq  wq  pq  qq rq

bob-up 100.0 50.0 5.0 100.0 30.0 100.0

Accel. De. maneuver 80.0 40.0 10.0 60.0 30.0 30.0

Waypoint tracking 30.0 10.0 30.0 80.0 120.0 80.0

 φq  θq  ψq  xEq yNq Hq

bob-up 500.0 900.0 900.0 50.0 50.0 50.0

Accel. De. maneuver 100.0 100.0 100.0 0.0 10.0 10.0

Waypoint tracking 500.0 500.0 3000.0 0.0 0.0 100.0

 

Table 3. Waypoints of guidance 1                  Table 4. Waypoints of guidance 2 

 

 

 

 

 

 

 

 

Waypoints X position (m) Y position (m)

1 0.0 0.0 

2 600.0 0.0 

3 600.0 600.0 

4 0.0 600.0 

Waypoints X position (m) Y position (m) 

1 0.0 0.0 

2 700.0 0.0 

3 360.0 940.0 

4 -410.0 300.0 

5 -580.0 770.0 

6 -1350.0 130.0 

7 -1520.0 600.0 

8 -2250.0 0.0 
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The ground control station (PC3: GCS) identifies the maneuver attributes and 
generates the switching signal in order for FCC to design the corresponding SDRE controller. 

In this paper, the rotorcraft maneuver sequence is like below: 

i.  Bob-up to 15m 

ii. Acceleration to 10m/s 

iii. Waypoint guidance 

iv. Deceleration to hover 

iv. Bob-down at ground 

The rotorcraft starts its maneuver from the hovering state at point (0,0,0). First, the 
height increase to 15meters during the bob-up maneuver. Next, forward speed 
isaccelerated up to 10m/s and rotorcraft passes the pre-defined waypoints. And then 
forward speed is decelerated up to the hover. Finally, the height decrease up to the ground. 

To show the effectiveness of the proposed method, we defined two kinds of waypoint 
guidance. It is generated by series of waypoints listed in Table 3 and Table 4. 

Figs. 5 ~ 9 show the results of waypoint guidance 1. Fig. 5 and Fig. 6 compare the 
prescribed trajectory generated by using the waypoints in Table 3 with calculated optimal 
trajectory. The SDRE controller shows some deviation from the target trajectory but the 
results generally trace the prescribe trajectory well.  

Fig. 6 shows the calculated optimal trajectory in 3-dimension. It presents that the 
rotorcraft go into the waypoint guidance from the bob-up maneuver at point 1. And after 
passing through the last point, the simulation finishes with bob-down maneuver. 
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Fig. 5. Maneuver trajectory of guidance 1 in 2-D   Fig. 6. Maneuver trajectory of guidance 1 in 3-D 
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Fig. 7. Velocity components of guidance 1      Fig. 8. Roll, pitch and yaw rate of guidance 1 
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Figs. 7~9 show the variation of rotorcraft velocity components, angular velocity 
components and controls. From the Fig. 6, we can fine that the rotorcraft goes into the 
waypoint guidance through the acceleration of forward speed and then it goes into hover 
state again after deceleration.  

Figs. 10 ~ 14 show the results of waypoint guidance 2. The guidance 2 is somehow 
more aggressive than the guidance 1 but the results generally trace the prescribe trajectory 
well. Fig. 10 and Fig. 11 compare the prescribed trajectory with calculated optimal trajectory 
in 2-D and 3-D. And the Figs. 12~14 present also velocity, angular rate and the control 
variation during the maneuver. 
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Fig. 9. Control inputs of guidance 1         Fig. 10. Maneuver trajectory of guidance 2 in 2-D  
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Fig. 11. Maneuver trajectory of guidance 2 in 3-D    Fig. 12. Velocity components of guidance 2      
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Fig. 13. Roll, pitch and yaw rate of guidance 2         Fig. 14. Control inputs of guidance 2 
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Conclusions 

This paper has studied the application method of SDRE technique to the waypoint guidance. 
The trajectory passing through the series of waypoints has generated by using trigonometric spline. 
The results show the SDRE controller can be applied to the rotorcraft guidance and control. The 
controller has been verified using the simulation environment of high fidelity rotorcraft model. After 
the guidance simulation, the results show the controlled trajectory trace the prescribed it well and 
indicate the successful implementation of the rotorcraft SDRE controller.  
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