• Title/Summary/Keyword: wavelet fuzzy model

Search Result 41, Processing Time 0.028 seconds

A Study on Fuzzy Wavelet Neural Network System Based on ANFIS Applying Bell Type Fuzzy Membership Function (벨형 퍼지 소속함수를 적용한 ANFIS 기반 퍼지 웨이브렛 신경망 시스템의 연구)

  • 변오성;조수형;문성용
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.363-369
    • /
    • 2002
  • In this paper, it could improved on the arbitrary nonlinear function learning approximation which have the wavelet neural network based on Adaptive Neuro-Fuzzy Inference System(ANFIS) and the multi-resolution Analysis(MRA) of the wavelet transform. ANFIS structure is composed of a bell type fuzzy membership function, and the wavelet neural network structure become composed of the forward algorithm and the backpropagation neural network algorithm. This wavelet composition has a single size, and it is used the backpropagation algorithm for learning of the wavelet neural network based on ANFIS. It is confirmed to be improved the wavelet base number decrease and the convergence speed performances of the wavelet neural network based on ANFIS Model which is using the wavelet translation parameter learning and bell type membership function of ANFIS than the conventional algorithm from 1 dimension and 2 dimension functions.

Industrial load forecasting using the fuzzy clustering and wavelet transform analysis

  • Yu, In-Keun
    • Journal of IKEEE
    • /
    • v.4 no.2 s.7
    • /
    • pp.233-240
    • /
    • 2000
  • This paper presents fuzzy clustering and wavelet transform analysis based technique for the industrial hourly load forecasting fur the purpose of peak demand control. Firstly, one year of historical load data were sorted and clustered into several groups using fuzzy clustering and then wavelet transform is adopted using the Biorthogonal mother wavelet in order to forecast the peak load of one hour ahead. The 5-level decomposition of the daily industrial load curve is implemented to consider the weather sensitive component of loads effectively. The wavelet coefficients associated with certain frequency and time localization is adjusted using the conventional multiple regression method and the components are reconstructed to predict the final loads through a five-scale synthesis technique. The outcome of the study clearly indicates that the proposed composite model of fuzzy clustering and wavelet transform approach can be used as an attractive and effective means for the industrial hourly peak load forecasting.

  • PDF

Wavelet-Based Fuzzy Modeling Using a DNA Coding Method (DNA 코딩 기법을 이용한 웨이브렛 기반 퍼지 모델링)

  • Joo, Young-Hoon;Lee, Yeun-Woo;Yu, Jin-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.737-742
    • /
    • 2003
  • In this paper, we propose a new wavelet-based fuzzy modeling using a DNA coding method. Generally, it is well known that the DNA coding method is more diverse in the knowledge expression and better in the optimization performance than the genetic algorithm (GA) because it can encode more plentiful genetic information based on the biological DNA. The proposed method makes a fuzzy model by using the wavelet transform, in which coefficients are identified by the DNA coding method. Thus we can effectively get the fuzzy model of nonlinear system by using the advantages of both wavelet transform and DNA coding method. In order to demonstrate the superiority of the proposed method, it is compared with the GA.

Stable Path Tracking Control Using a Wavelet Based Fuzzy Neural Network for Mobile Robots

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2254-2259
    • /
    • 2005
  • In this paper, we propose a wavelet based fuzzy neural network(WFNN) based direct adaptive control scheme for the solution of the tracking problem of mobile robots. To design a controller, we present a WFNN structure that merges advantages of neural network, fuzzy model and wavelet transform. The basic idea of our WFNN structure is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. In our control system, the control signals are directly obtained to minimize the difference between the reference track and the pose of mobile robot using the gradient descent(GD) method. In addition, an approach that uses adaptive learning rates for the training of WFNN controller is driven via a Lyapunov stability analysis to guarantee the fast convergence, that is, learning rates are adaptively determined to rapidly minimize the state errors of a mobile robot. Finally, to evaluate the performance of the proposed direct adaptive control system using the WFNN controller, we compare the control performance of the WFNN controller with those of the FNN, the WNN and the WFM controllers.

  • PDF

Stable Wavelet Based Fuzzy Neural Network for the Identification of Nonlinear Systems (비선형 시스템의 동정을 위한 안정한 웨이블릿 기반 퍼지 뉴럴 네트워크)

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2681-2683
    • /
    • 2005
  • In this paper, we present the structure of fuzzy neural network(FNN) based on wavelet function, and apply this network structure to the identification of nonlinear systems. For adjusting the shape of membership function and the connection weights, the parameter learning method based on the gradient descent scheme is adopted. And an approach that uses adaptive learning rates is driven via a Lyapunov stability analysis to guarantee the fast convergence. Finally, to verify the efficiency of our network structure. we compare the Identification performance of proposed wavelet based fuzzy neural network(WFNN) with those of the FNN, the wavelet fuzzy model(WFM) and the wavelet neural network(WNN) through the computer simulation.

  • PDF

Design of the Wavelet-Based Fuzzy PI/PO Controller Using DNA Coding Method (웨이블릿 기반 DNA 코딩기법을 이용한 광디스크 드라이브용 퍼지 PI/PD 제어기 설계)

  • Yu, Jong-Hwa;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.370-372
    • /
    • 2004
  • This paper addresses the wavelet-based fuzzy PI/PD controller design using DNA coding method. A structure of fuzzy controller model is adopted as the wavelet transform of which the coefficients are identified. The proposed method overcomes some mathematical limits of conventional methods by using the fuzzy logic that is optimized by DNA coding method. The feasibility of the proposed fuzzy controller design scheme is verified by applying to the servo control of the optical disk drive.

  • PDF

Single Parameter Fault Identification Technique for DC Motor through Wavelet Analysis and Fuzzy Logic

  • Winston, D.Prince;Saravanan, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1049-1055
    • /
    • 2013
  • DC motors are widely used in industries like cement, paper manufacturing, etc., even today. Early fault identification in dc motors significantly improves its life time and reduces power consumption. Many conventional and soft computing techniques for fault identification in DC motors including a recent work using model based analysis with the help of fuzzy logic are available in literature. In this paper fuzzy logic and norm based wavelet analysis of startup transient current are proposed to identify and quantify the armature winding fault and bearing fault in DC motors, respectively. Results obtained by simulation using Matlab and Simulink are presented in this paper to validate the proposed work.

A Study on Fuzzy Wavelet LDA Mixed Model for an effective Face Expression Recognition (효과적인 얼굴 표정 인식을 위한 퍼지 웨이브렛 LDA융합 모델 연구)

  • Rho, Jong-Heun;Baek, Young-Hyun;Moon, Sung-Ryong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.759-765
    • /
    • 2006
  • In this paper, it is proposed an effective face expression recognition LDA mixed mode using a triangularity membership fuzzy function and wavelet basis. The proposal algorithm gets performs the optimal image, fuzzy wavelet algorithm and Expression recognition is consisted of face characteristic detection step and face Expression recognition step. This paper could applied to the PCA and LDA in using some simple strategies and also compares and analyzes the performance of the LDA mixed model which is combined and the facial expression recognition based on PCA and LDA. The LDA mixed model is represented by the PCA and the LDA approaches. And then we calculate the distance of vectors dPCA, dLDA from all fates in the database. Last, the two vectors are combined according to a given combination rule and the final decision is made by NNPC. In a result, we could showed the superior the LDA mixed model can be than the conventional algorithm.

A Comparative Analysis of Fuzzy Logic-Based Relaying and Wavelet-Based Relaying for Large Transformer Protection (대용량 변압기 보호용 퍼지논리 계전기법과 웨이브렛 계전기법의 비교 분석)

  • Park, Chul-Won;Park, Jae-Sae;Shin, Myong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.4
    • /
    • pp.179-188
    • /
    • 2003
  • Percentage differential characteristic scheme has been recognized as the principal basis for large transformer protection. Nowadays, relaying signals can contain second harmonic component to a large extent even in a normal state, and second harmonic ratio indicates a tendency of relative reduction because of the advancement of transformer's core material. And then, conventional second harmonic restraint differential relaying exposes some doubt in reliability. It is, therefore, necessary to develop a new algorithm for the effective and accurate discrimination. This paper deals with advanced fuzzy logic based relaying by using flux differential, and a new fault detection criterion logic scheme by using wavelet transform. To comparative analysis of proposed techniques, the paper constructs power system model including power transformer, utilizing the EMTP, and collects data through simulation of various internal faults and magnetizing inrush. The proposed fuzzy relaying and a new fault detection scheme were tested. The former, fuzzy relaying, was proven to be faster and more reliable than the latter.