• Title/Summary/Keyword: wavelet fuzzy model

Search Result 41, Processing Time 0.03 seconds

The Modeling of Chaotic Nonlinear System Using Wavelet Based Fuzzy Neural Network

  • Oh, Joon-Seop;You, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.635-639
    • /
    • 2004
  • In this paper, we present a novel approach for the structure of Fuzzy Neural Network(FNN) based on wavelet function and apply this network structure to the modeling of chaotic nonlinear systems. Generally, the wavelet fuzzy model(WFM) has the advantage of the wavelet transform by constituting the fuzzy basis function(FBF) and the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure(WFNN) that merges these advantages of neural network, fuzzy model and wavelet transform. The basic idea of our wavelet based FNN is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. And our network can automatically identify the fuzzy rules by modifying the connection weights of the networks via the gradient descent scheme. To verify the efficiency of our network structure, we evaluate the modeling performance for chaotic nonlinear systems and compare it with those of the FNN and the WFM.

  • PDF

Path Tracking Control Using a Wavelet Based Fuzzy Neural Network for Mobile Robots

  • Oh, Joon-Seop;Park, Yoon-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.111-118
    • /
    • 2004
  • In this paper, we present a novel approach for the structure of Fuzzy Neural Network(FNN) based on wavelet function and apply this network structure to the solution of the tracking problem for mobile robots. Generally, the wavelet fuzzy model(WFM) has the advantage of the wavelet transform by constituting the fuzzy basis function(FBF) and the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure(WFNN) that merges these advantages of neural network, fuzzy model and wavelet transform. The basic idea of our wavelet based FNN is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. And our network can automatically identify the fuzzy rules by modifying the connection weights of the networks via the gradient descent scheme. To verify the efficiency of our network structure, we evaluate the tracking performance for mobile robot and compare it with those of the FNN and the WFM.

Wavelet-Based Fuzzy System Modeling Using VEGA (VEGA를 이용한 웨이브릿 기반 퍼지 시스템 모델링)

  • 이승준;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.149-152
    • /
    • 2000
  • This paper addresses the wavelet fuzzy modeling using Virus-Evolutionary Genetic Algorithm (VEGA). We build a fuzzy system model which is equivalent to the wavelet transform after identifying the coefficients of wavelet transform. We can obtain an accurate system model with a small number of coefficients due to the energy compaction property of the wavelet transform. It thus means that we can construct a fuzzy system model with a small number of rules. In order to identify the wide-ranged coefficients of the wavelet transform, VEGA is adopted, which has prominent ability to avoid premature local convergence that is suitable to complex optimization problems. We demonstrate the superiority of our proposed fuzzy system modeling method over the previous results by modeling nonlinear function.

  • PDF

Fuzzy Modeling Using Wavelet Transform and Genetic Algorithm (웨이브렛 변환과 유전 알고리듬을 이용한 퍼지 모델링)

  • Lee, Seung-Jun;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2327-2329
    • /
    • 2000
  • This paper addresses the use of a nonlinear modeling procedure which construct a wavelet-based fuzzy model using genetic algorithm. A fuzzy inference system has the functional equivalence with a wavelet transform. Therefore, a wavelet-based fuzzy model using GA inherits the advantage of wavelet transform. Hereby, its performance is promoted. By help of the ability of GA to search the optimum globally, parameters of wavelet transform is determined closely to the optimal point. The feasibility of the proposed fuzzy model is proved by modelling a highly nonlinear function and comparing it with previous research.

  • PDF

A Study on the Demand Forecasting Control using A Composite Fuzzy Model (복합 퍼지모델을 이용한 디맨드 예측 제어에 관한 연구)

  • Kim, Chang-Il;Seong, Gi-Cheol;Yu, In-Geun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.9
    • /
    • pp.417-424
    • /
    • 2002
  • This paper presents an industrial peak load management system for the peak demand control. Kohonen neural network and wavelet transform based techniques are adopted for industrial peak load forecasting that will be used as input data of the peak demand control. Firstly, one year of historical load data of a steel company were sorted and clustered into several groups using Kohonen neural network and then wavelet transforms are applied with Biorthogonal 1.3 mother wavelet in order to forecast the peak load of one minute ahead. In addition, for the peak demand control, composite fuzzy model is proposed and implemented in this work. The results are compared with those of conventional model, fuzzy model and composite model, respectively. The outcome of the study clearly indicates that the composite fuzzy model approach can be used as an attractive and effective means of the peak demand control.

Wavelet-Based Fuzzy Modeling Using a DNA Coding Method

  • Joo, Young-Hoon;Lee, Veun-Woo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.121-126
    • /
    • 2003
  • In this paper, we propose a new wavelet-based fuzzy modeling using a DNA coding method. Generally, it is well known that the DNA coding method is more diverse in the knowledge expression and better in the optimization performance than the genetic algorithm (GA) because it can encode more plentiful genetic informations based on the biological DNA. The proposed method can construct a fuzzy model using the wavelet transform, in which the coefficients are identified by the DNA coding method. Thus, we can effectively get the fuzzy model of the nonlinear system by using the advantages of both wavelet transform and DNA coding method. In order to demonstrate the superiority of the proposed method, it is compared with modeling method using the conventional GA.

Direct Adaptive Control System for Path Tracking of Mobile Robot Based on Wavelet Fuzzy Neural Network (이동 로봇의 경로 추종을 위한 웨이블릿 퍼지 신경 회로망 기반 직접 적응 제어 시스템)

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2432-2434
    • /
    • 2004
  • In this paper, we present a novel approach for the structure of Fuzzy Neural Network(FNN) based on wavelet function and apply this network structure to the solution of the tracking problem for mobile robots. Generally, the wavelet fuzzy model(WFM) has the advantage of the wavelet transform by constituting fuzzy basis function(FBF) and the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure(WFNN) that merges these advantages of neural network, fuzzy model and wavelet. To verify the efficiency of our network structure, we evaluate the tracking performance for mobile robot and compare it with those of the FNN and the WFM.

  • PDF

Stable Path Tracking Control of a Mobile Robot Using a Wavelet Based Fuzzy Neural Network

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.552-563
    • /
    • 2005
  • In this paper, we propose a wavelet based fuzzy neural network (WFNN) based direct adaptive control scheme for the solution of the tracking problem of mobile robots. To design a controller, we present a WFNN structure that merges the advantages of the neural network, fuzzy model and wavelet transform. The basic idea of our WFNN structure is to realize the process of fuzzy reasoning of the wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. In our control system, the control signals are directly obtained to minimize the difference between the reference track and the pose of a mobile robot via the gradient descent (GD) method. In addition, an approach that uses adaptive learning rates for training of the WFNN controller is driven via a Lyapunov stability analysis to guarantee fast convergence, that is, learning rates are adaptively determined to rapidly minimize the state errors of a mobile robot. Finally, to evaluate the performance of the proposed direct adaptive control system using the WFNN controller, we compare the control results of the WFNN controller with those of the FNN, the WNN and the WFM controllers.

Fuzzy Model Identification for Time Series System Using Wavelet Transform and Genetic DNA-Code

  • Lee, Yeun-Woo;Kim, Jung-Chan;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.322-325
    • /
    • 2003
  • In this paper, we propose n new fuzzy model identification of time series system using wavelet transform and genetic DNA code. Generally, it is well known that the DNA coding method is more diverse in the knowledge expression and better in the optimization performance than the genetic algorithm (GA) because it can encode more plentiful genetic information based on the biological DNA. The proposed method can construct a fuzzy model using the wavelet transform, in which the coefficients are identified by the DNA coding method. Thus, we can effectively get the fuzzy model of the nonlinear system by using the advantages of both wavelet transform and DNA coding method. In order to demonstrate the superiority of the proposed method, it is compared with modeling method using the conventional GA.

  • PDF

Wavelet-Based Fuzzy Modeling Using a DNA Coding Method (DNA 코딩 기법을 이용한 웨이브렛 기반 퍼지 모델링)

  • Lee, Yeun-Woo;Yu, Jin-Young;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2040-2042
    • /
    • 2003
  • In this paper, we propose a new method about wavelet-based fuzzy modeling using a DNA coding method. DNA coding techniques is known that expression of knowledge is various than Genetic Algorithm(GA) usually by made optimization technique because done base in structure of biologic DNA and optimization performance is superior. The reposed method make fuzzy system model in wavelet transform and equivalence relation after identification with coefficient of wavelet transform using a DNA coding techniques. Also, can get fuzzy model effectively of nonlinear system using advantage of strong wavelet transform about function that have sudden change. In this paper, in order to demonstrate the superiority of the proposed method compared with GA.

  • PDF