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Stable Path Tracking Control of a Mobile Robot Using
a Wavelet Based Fuzzy Neural Network

Joon Seop Oh, Jin Bae Park*, and Yoon Ho Choi

Abstract: In this paper, we propose a wavelet based fuzzy neural network (WFNN) based
direct adaptive control scheme for the solution of the tracking problem of mobile robots. To
design a controller, we present a WFNN structure that merges the advantages of the neural
network, fuzzy model and wavelet transform. The basic idea of our WFNN structure is to
realize the process of fuzzy reasoning of the wavelet fuzzy system by the structure of a neural
network and to make the parameters of fuzzy reasoning be expressed by the connection weights
of a neural network. In our control system, the control signals are directly obtained to minimize
the difference between the reference track and the pose of a mobile robot via the gradient
descent (GD) method. In addition, an approach that uses adaptive learning rates for training of
the WFNN controller is driven via a Lyapunov stability analysis to guarantee fast convergence,
that is, learning rates are adaptively determined to rapidly minimize the state errors of a mobile
robot. Finally, to evaluate the performance of the proposed direct adaptive control system using
the WENN controller, we compare the control results of the WFNN controller with those of the
FNN, the WNN and the WFM controllers.

Keywords: Fuzzy neural network, gradient descent method, Lyapunov stability, mobile robot,

path tracking control, wavelet fuzzy model, wavelet neural network.

1. INTRODUCTION

The localization and path tracking problems for
mobile robots have been given great attention by
automatic control researchers in recently published
literature. The motion control of mobile robots is a
typical nonlinear tracking control issue and has been
discussed with different control schemes such as PID,
GPC, sliding mode, predictive control, etc., [1-6].
Intelligent control techniques, based on neural
networks and fuzzy logic, have also been developed
for path tracking control of mobile robots [7,8]. Even
though these intelligent control strategies have shown
their effectiveness, especially for nonlinear systems,
they have certain drawbacks due to their own
characteristics. While conventional neural networks
have good ability for self-learning, they also have
some limitations such as slow convergence, the
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difficulty in reaching the global minima in the
parameter space, and sometimes even instability as
well. In the case of fuzzy logic, it is'a human-imitating
logic, but lacks the ability for self-learning and self-
tuning. Therefore, in the research area of intelligent
control, fuzzy neural networks (FNNs) are devised to
overcome these limitations and to combine the
advantages of both neural networks and fuzzy logic
[9-11]. This provides a strong motivation for using
FNNs in the modeling and control of nonlinear
systems. The wavelet fuzzy model (WFM) has the
advantage of wavelet transform by constituting the
fuzzy basis function (FBF) and the conclusion part to
equalize the linear combination of FBF with the linear
combination of wavelet functions [12-15]. The
conventional fuzzy model cannot provide a
satisfactory result for the transient signal. On the
contrary, in the case of the WFM, the accurate fuzzy
model can be obtained because the energy compaction
by the unconditional basis and the description of a
transient signal by wavelet basis functions are
distinguished [16,17]. Therefore, we have designed a
FNN structure based on wavelet, which merges the
advantages of neural network, fuzzy model and
wavelet. The basic idea of the wavelet based fuzzy
neural network (WFNN) is to realize the process of
fuzzy reasoning of the WFM by the structure of a
neural network and to make the parameters of fuzzy
reasoning be expressed by the connection weights of a
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neural network. An approach that uses adaptive
learning rates is driven via a Lyapunov stability
analysis to guarantee fast convergence. In this paper,
we design the direct adaptive control system using the
WFNN structure. The control inputs are directly
obtained by minimizing the difference between the
reference track and the pose of a mobile robot that is
controlled through a WFNN controller. The control
process is a dynamic on-line one that uses the WFNN
trained by the gradient descent (GD) method. Through
computer simulations, we demonstrate the
effectiveness and feasibility of the proposed control
method and compare the control performance of the
WFNN with those of the FNN, the WFM and the
wavelet neural network (WNN). The remainder of this
paper is composed as follows. Section 2 illustrates the
network structure and learning algorithm of the
WENN. Section 3 then develops the direct adaptive
control system and adaptive learning rates for the
stable network. Sections 4 and 5 present the
simulation results and conclusions, respectively.

2. STRUCTURE OF WAVELET BASED
FUZZY NEURAL NETWORK

While the WFM has the advantage of the wavelet
transform, neural networks utilize their learning
capability for automatic identification and tuning, but
they have the following problems among others: (i)
they need accurate input-output data, and (ii) their
learning process is time-consuming. Therefore, we
have designed a FNN structure based on wavelet that
merges the advantages of the neural network, fuzzy
modeling and wavelet. The basic idea of the WFNN is
to realize the process of fuzzy reasoning of the
wavelet fuzzy model by the structure of a neural
network and to make the parameters of fuzzy
reasoning be expressed by the connection weights of a
neural network. WFNNs can automatically identify
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Fig. 1. WFNN structure.

the fuzzy rules by modifying the connection weights
of the networks using the GD scheme. Among various
fuzzy inference methods, WFNNs use the sum-
product composition. The functions that are
implemented by the networks must be differentiable
in order to apply the GD scheme to their learning.

Fig. 1 shows the configuration of the WFNN, which

has N inputs (x;, Xy,-,xy), C outputs (31,32,
-+, ¥c), and K, membership functions in each
input x,,.

The circles and the squares in the figure represent
the units of the network. The denotations a, w, m, d

and the numbers (1,—1) between the units denote the
connection weights of the network. WFNN can be
divided into two parts according to the fuzzy
reasoning process: the premise part and the
consequence part. The premise part consists of nodes
(A), (C) and (D), and the consequence part consists of
nodes (D) through (F). The grades of the membership
functions in the premise are calculated in nodes (A)
and (C). Nodes (B) and (E) are used to equalize the
linear combination of FBF with the linear
combination of wavelet functions for the advantage of
wavelet transform. Therefore, the output node (F) is
equivalent to wavelet transform. Consequently, in our

WFNN structure, the output v, is calculated as

follows:
. N R
Vo= 2apXy +2 B @, (1)
n=1 Jj=1
where

N
q)j = 1_[ ¢k,,n (ann)
n=1

y xn_mkn 1 xn_mkn :
= H— — exp| —— . :
n=1 dk,,n 2 dknn
wavelet function, &, : k-th fuzzy variable of input n,
k, : the number of fuzzy variables for the #n-th input,

N : the number of inputs, R : the number of fuzzy rules
(the number of wavelet function), ¢ ,(z ,):

mother wavelet function.

The detailed descriptions of input and output nodes
are as follows. Here, input and output nodes are
denoted by 7 and O, respectively and the subscript
denotes each node.

Node A:
0,=- x—;ki : 2)
Node B
Sz o
i s "
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Node C:

OC = Aknn(xn) = exp[_%oj)

_ 1{x,—m, ’ @
= exp -3 T .

Node D:

N N
I=p, =110, =[14,.x)
n=l1 n=l

ﬂ LI X =My ’ )
=] |exp| —— - .
n=1 2 dk,,n

LK

OD =H =3
Zﬂj

J=1

2
il 1 xn - mk n
exp| - : (6)
];! { 2( dknn ] \]
5 s
i“ ﬁ 1 xn - mknn
eXpl ——
Jj=1| n=1 2 dk,,n
J

N
where R=]]X,.

k=1

Node E:
O, = Vie = O 0,0,

Jj=1| n=l 1 (7)
y x?’l—mk 7 1 xn —mk A
- - exp| —— =
{7 [ (" U
B * R N 2
1 xn_mkn
exp| ——=| ————
gl
= B].CCI)], )
a)jc
where B, =— .
21D,
j=1
Node F
N R
OF = yc = Zancxn +zyjc
n=1 j=1
(®)

N R
= Zancxn +ZBjcCI)j .
n=1 =1

J

The input space is divided into R fuzzy subspaces.

The truth value of the fuzzy rule in each subspace is

given by the product of the grades of the membership
functions for the units in node (D). Here, u; is the

truth value of the j-th fuzzy rule and f; is the

normalized value of u;. The fuzzy system realizes
the center of gravity defuzzification formula using
f; in(6).

The consequence part consists of nodes (D) through
(F) and the fuzzy reasoning is realized as follows:

R/:
I xisd,, - , x,is4

nn,

(j=12,,R and c=12,--,C),

and x, is 4,
Then y,=w,

where R is the J-th fuzzy rule, 4 , is a fuzzy variable
in the premise, and . is a constant. Consequently,
the output value of node (F) includes the inferred
values.

In our network structure, the network weight set,
y={a,o,d,m}, is tuned to minimize the model

errors via the GD method. In order to apply the GD
method, the squared error function is defined as
follows:

1 n . .
T =S (G = 51+ 0 =520+t (e = 5)*9)

where \?z[f/l P2 - Jc] are the output values of a
WFNN and Y, =[y, ¥, - y,c] are the desired

values.
Using the GD method, the weight set,
v={a,®,d, m}, can be tuned as follows:

v, (k+1) =7, (k)+ Ay, (k)

oJ
=y (k)—

Y, (k) "ayp(k)
aJ oY
oY oy, (k)

=7,()+n-E-9,,

(10
=v,(k)-n

Where E :[(yrl _.);1) (yrZ _.)’}2) o (er _J;(')] ’subscript
p denotes each network weight and 7 is called the

learning rate.

The gradient set of WFNN output Y with respect
to weight set is calculated as in (11), and each gradient

of WFNN output $ with respect to each weight is
presented as in (12) to (14):

) 4
v, =
oy, (k)
oY oY av a8y
da(k) do(k) dm(k) ad(k) |

:[f)a f)a) f)m 1A)d]

(1D
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o, =—*—=x,, (12)
" day(ky "
R
A 6 Z y]C ®
. o (13)
@i R 1
o Ow (k) Owj.(k) S,
j:1 J
d 38,0
0 - aj}c - j=1 e 14
M Dicyn amk,,nrdknn(k) - 6mk,,n’dk,,n(k) ( )
_g v NUM(my g, ) DEN(my ,.d; )NUM
= DEN DEN? )
N
FKk R
_ k=l _ -
where H——K——, NUM =9, DEN—ZIDj,
N 7=l
. o
NUM(m, ,) = ;" a]a\’z UM
k,n k.n

N

[14..(z,)
— 1 n=1 2 1 2
L (g ifess[-L03 ).

dknn ¢kn" (Zk"n)

. 0z
DEN(m, )= CDEN
’ mk,,n azknn
N
1 i H Cor 2
=-—D |5 -0, exp| =0 ,
d,, Ock" ( e p[ o jj
h
. o
NUM(, )= Zrn ONUM

od,,, oz,

N
O2 H ¢knn (Zk,,n )
A | e {(ij - l)exp(—%ojw D ,

ko
dknn ¢k,,n (Zk,,n )

oz, , ADEN
od wn OZ .

N
j H H Ocknn 1
=y s -0, exp|-—0’
d ; ( A p( 2 A ]\]

k,n OC kan

DEN(dknn) =

h

3. PATH TRACKING CONTROL FOR
MOBILE ROBOT USING THE WFNN

3.1. Dynamic model of mobile robot

The mobile robot used in this paper is composed of
two driving wheels and four casters. It is fully
described by a three dimensional vector of generalized
coordinates constituted by the coordinates of the

Coordinate

Fig. 2. Mobile robot model and world coordinate.

midpoint between the two driving wheels, and by the
orientation angle with respect to a fixed frame as
shown in Fig. 2.

The equation for motion dynamics is as follows:

od cos(6, +@)
Xk+1 Xk 5;
Yo |=Y |+ 5dksin(9k+7") , (15)
6k+l Hk
00,
where o&d = d, —d, and dé = d, —d are linear

velocity and angular velocity, respectively, and d,,
d; and b are two incremental distances of two
driving wheels and distance between these two wheels,
respectively. In this model, the control input vector is

represented by U = [u d ug]T = [&l 59]T .

3.2. The direct adaptive control system using the
WENN

In our control system, the direct adaptive control

system is designed using the WFNN structure. The

purpose of our control system is to minimize the state

error E(e,,e,,ep) between the reference trajectory

Y,(x,,y,,68,) and the
Y(x,v,0) of a mobile robot. For this purpose, the

parameters of the WFNN are trained via the GD
method. The overall control system is shown in Fig. 3.
The WFNN controller calculates the control input

controlled  trajectory

U= [u d ug]T by training the inverse dynamics of the
plant iteratively. However, the updating of parameters
of the WFNN through the variation rate J(y,Y) in
the GD method cannot be calculated directly. So, we

train the parameters of a WFNN through the
transformation of the output error of the plant. In our
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Updating the parameters
of WFNN
A
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The Direct Adaptive [Jij ©*
Controller Based on {4
WFNN

Gradient Descent
Method

controlled trajectory
Y(x,3.0)
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Lyapunov Stability
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State error
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Fig. 3. Direct adaptive control system.
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Fig. 4. WFNN structure for mobile robot.

WENN structure, inputs, multidimensional wavelets,
and two outputs are considered as shown in Fig. 4.

In this structure, inputs are composed of errors
between the reference trajectory and the controlled
trajectory, and outputs are control variables. Each
control variable is as follows:

3 R 3 R
Ug = zanden +Z yjd = zanden +Z Bjdq)ja
n=1 j=1 n=1 j=1
3 R 3 R
Up = Zaneen +2 ng = Zangen +Z Bjaq)ja
n=1 j=1 n=1 j=1

(16)

where

and c=1{d,0}.

Training Procedure
The purpose of training the parameters of the
WEFNN is to minimize the state errors E(e,,e,,¢,). To

do this, we present the following training procedure:

- Definition of the following cost function so as to
train a WENN controller based on direct adaptive
control technique:

C:%((xr~x)2+(yr——y)2+(0r_0)2)' (17)

- Calculation of the partial derivative of the cost
function with respect to the parameter set of a WFNN
controller:

oC Ox dy el
=g, e, ———€ —
BN R VY RN
oUoy, ”oUoy ou oy,
=—EJ(u)a—U,
o,
where e, =x,-x, e,=y, -y, ¢g=0,-60, and

J(u) =Z—:§ is the feedforward Jacobian of a mobile

robot and is as follows:

cos( + %) - %Siﬂ(@k + %)
J(w)=| sin(@, + %) i;d_kcos(gk +%) .(19)
2 2 2
1
) ° NG =6)1

The partial derivative of the control input U with
respect to the parameters of a WFNN controller can
be calculated by using (20) and (21).

- Updating of the parameters of the WFNN via the
following iterative GD method:

Yok +D)=7,(k)+ Ay, (k)

aC U
=y (k)—g——=v (k) -nEJ(u)—,
Y p(k) 775p Ypk)—1n (u)gp

(20)

where 7 is the learning rate of a WFNN.

From (18) and (19), each gradient of the controller
output u, with respect to each weight is presented as

follows:
Ou,,
=e,, 21
oa,, " @h
R
! a.zy/c O
Ue - J=1 - J (22)
8a1]-c aa)jc(k) R Ip.
=1
a[gg q,]
2. Bjc®
e _ (23)

Oy sy, n(K)  Omp ol n(K)
H NUM{(my, .y, ) DEN(my ,.dy ,)NUM
= Z ch - - >
! h

P DEN DEN?

and the detailed description is shown in (14).
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3.3. Convergence and stability of the WFNN
controller
In the update rule of (20), selection of the values for
the learning rate 7 has a significant effect on the
control performance. Generally, if 7 is too big, the
system is unstable. For the small 7, although the
convergence is guaranteed, the control speed is very
slow. Therefore, in order to train the WFNN
effectively, adaptive learning rates, which guarantee
both fast convergence and stability, must be derived.
In this subsection, the specific learning rates for the
type of network weights are derived based on the

convergence analysis of a discrete type Lyapunov
function.

Theorem 1: Let 7, . be the learning rate for the
output u, influenced by weight vector y, of the

WENN. G, (k) and G, (k) are defined as

9u, (k) _
Gp’c(k)=m and G, e (F) = max |G, (8],
respectively, and || is the Euclidean norm in ®R”.

Here, subscripts p and ¢ denote each weight and

output, respectively. Then the convergence is
guaranteed if 7, . is chosen as follows:

2
2
pcmax (k)(‘]ic +J +J€7

0<7,, < 24)

Proof: In this analysis, a discrete type Lyapunov
function is selected as

V(k)= %ET E(k), (25)

where E(k) is the difference between the desired
state Y, (k) and the output state Y(k). Then, the
change of Lyapunov function is obtained by

AV =V (k+1D) -V (k)
= %(e)%(k +1)— e} (k) + e (k +1) - e} (k) (26)
+eg(k+1)—e5 (k) ,
where

T
de., (k
Aex(k>=ex(k+1)—ex(k){-857((kﬂ Ay (k).

T

e, (k

Ae)’(k) ~ L;y((k))} A’Yp(k),
p

T
Aeg(k)z{g?((];))} AY (k).
14

From (18), (19) and (20), Ay, (k) is defined as

oC
=_ -~ 27
Ay, (k) np,céy ® 27
_ ax(k) (k) 00(k)
"7’”[ o) T )auc<k>+e"(k)az:c(k)j
ou, (k)
oy, 0l
and the error difference can be represented by
de_(k) ’
Ae (K)= ———| Ay (k
e, (k) {67 (k)} 7, (k)
o 8uc(k) ax(k)n N
BEACIEXCh
ox(k) ay(k) 90(k) || Qu.(k) |(28)
( “O y(k)auxk)”"(k)auc(k)]{ay,,(k)}
_ ou (k) 6x(k)
~ el (| au )
(o oy 28) GG ae(k)}
[ex(k)auc(k) oM Do )

where Ae, (k) and Aeg(k) have the identical

description. Let J;. be an element of the

feedforward Jacobian for the state of a mobile robot
with respect to the control input, where, subscripts s
and ¢ denote one state among three states of a
mobile robot and the control input #,, respectively.

From (26) - (28), AV (k) can be represented as
AV (k) =V (k+1) =V (k)
= (e )+ e, (0 ~€X )+, (0 + 82, ()~
e (k) +(e, (k) + Ac, (B))’ ~ € (k) ]
=Ae, (k)[ex(k)Jr%Aex (k)} +Ae, (k)[ey (k) +%Aey (k)}- .
+Ae, (k) [% (k)+ % Ae, (k)}

ou. (b
oy, (k)

{exac)—%

e, +e, k), +e, k), )

p(

au, (o
o1, (k)

g, (e )], +e, ()], +e,(k)J,, )}
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e (00, v (0, v
-l:ey k) —% %”i% 2 g, (e (), +e, (k) +e,(k)J,, )}
Ty :3((]2 ZJg,c (e (k). +e,(k)J,, +ey(k)T,,.)
-{eg(k)—% % 2 Joe (e k), +e, (k)T +e,(k)J,, )]

au |

=—(e.(h)J 0, +e ), ) |1,
(et o +e,(), . +e, (k)T ) {"’ oy, (k)

2
{1 _%np,c (ch + Jj,c + Jﬁz,c )}}

= —(e.() ], +e,(0)J,, +ep(k)T,, ) plk).

Ou, (k)
oy, (k)

Let us define G,o(k) and G, ; o (k) as G, (k) =
Ou, (k) -
P and G, oy (k) = max |G, . (k)

Since

G,. (k)”2 ...

pk)=n,,

1
11-=n,,

el @l (727403

:np.c
i 11,60 ®]6, 0 (2,42, +J;,c)] @)
2

G,. (k)”2 ..

11

G} mox (K)

G,

Z 77p,L‘

p,¢,max

1
11=21,.6; k) (2, +Jj< +J2, )] >0,

i
AN

we obtain
0<np pe < 2 . (30)
Gp,c,max (k)(*];%,c + J_)Z/,C + Jg,c)
With this we complete the proof. 0

l
Remark 1: The convei\‘gence is guaranteed as long
as (29) is satisfied, i.e.:

1
Mpe [1 =~ G e (k)(Jic + e+ G, )} >0.(31)

The maximum learning rate, which guarantees the fast
convergence, can be obtained as 7, G’ (k)

p.c,max
2 2 2 . .
(L 4T +03) =1, ie:

, respectively.

1
2 b
G?),c,max (k )(Jg,c +J )21,0 + J@,c )

(32)

Np,cmax =

which is half of the upper limit.

Theorem 2: Let 77, . ={1,c: Nocs MTme>Maet be
the learning rate set for the weight set, y=
{a, o, d, m}, of WFNN, and G, (k) is defined
ou.(k) Ou,(k) Ou,(k)
dak) ’ do(k)’ om(k)’

as the gradient set, {

du, (k) du.(k) Bu,(k)
dw(k)’ dm(k)’ ad(k)
respect to the weight set. Then the convergence is
guaranteed if 7, . is chosen as

}, of WENN output u, with

2
(@0<n,, < ,
“e Nle, | (Jf’c + Jﬁ,c + Jg’c)

2

. ,
RZIOB,I (J§C+J§C+J§c)
) Vaet e+ 5,

| ”|max

()0 <17, < (33)

(C) 0< nm,c“'
2

[ |DEN|+VH

_|DEN
min

<

>

2

\/EHIa)jc

'max

2
2 2 2
J (Jx’c + Jy,c +J5e

max

dkn n

(d)0<ng,
2

2 [ |0k (pEN| +VE))

| |DEN e

<

Cl|H

2 2
@ e +Jy,c +J0,c

max

Proof (a): Let us define G, (k) as

G (k) =max, IGM(k)". Then from (30), we

a,c,max

obtain 0O<np < 2
ac 2 2 2 2 )
Ga,c,max (k)(Tx,C + Jy,c + JB,C )
From the definition of Theorem 1, the maximum
condition can be obtained as

Ou, (k)
8ay, (k)

max ”Ga,c (k)" =max,

}}=maxk||Eusﬁ|en|m~

Thus
2
G e max (K)=Ne,|. .

where e, isthe n-th input value of WFNN and N

is the number of inputs. The rest of the proof is shown
in Appendix. O

Remark 2: The maximum learning rates of the
WFNN, which guarantee fast convergence, are as
follows:
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Nac.max = ,
S NP (V2e+3e+J5e)
1
Toems = T oV
R |ij| (2o+ 22 +3,)
Tmc,max =
1
\/_ 2
2 |DEN|+VH 2 ) )
max
Nd,cmax ="
1
5 ~2
R ‘OA,knn (IpEN|+H) .
\/E Hich max{ dkn:lax | IDEN|2 (Jm, +JW +J976)
77 Imin
max
4. SIMULATION RESULTS

In this Section, we present simulation results to
validate the control performance of the proposed
WENN controller for the path tracking of mobile
robots.  Through computer simulations, we
demonstrate the effectiveness and feasibility of the
proposed control method and compare the control
performance of the proposed WFNN controller with
those of the FNN, the WFM and the WNN,
respectively. The control process is a dynamic on-line
process that uses the WFNN trained by the GD
method. Generally, the characteristic of the network
structure as a controller is very susceptible to several
simulation environments such as the initial value of
network weight, the sampling time, the learning rate,
etc. In this computer simulation, the initial values of
network weight are randomly determined and the
sampling time of the control procedure is 0.01sec.

In the update rule of the GD method, selection of
the values for the learning rate # has a significant

effect on the control performance. So, in our control
system, the learning rates are adaptively determined to
rapidly minimize the state errors. The inputs of the
controller are three state errors, E(e,,e e,). The

simulation environments are as shown in Table 1.
This simulation considers the tracking of a
trajectory generated by the following displacements:

559
Linear velocity od =20cm/sec,
Angular velocity 66 =0°/sec (0<1<5)
Linear velocity od =30cm/sec,
Angular velocity 66 =59.3°/sec (5<1<10)
Linear velocity &d =30cm/sec,
Angular velocity 60 =-59.3°/sec  (10<t<15)
Linear velocity od =20cm/sec,
Angular velocity 66 =0°/sec (15 <1 <20)

Fig. 5 shows the reference path and controlled path

of a mobile robot using a WFNN controller. Figs. 6
and 7 present the control errors for path tracking of a

¥ position(em)

o T e ) oo 150
X positioniom)

Fig. 6. Path tracking errors.

Table 1. The simulation environments.

MF number of Wavelet .
each inpu to (Rule number) Parameter Learning rate
Our WFNN 3 27 78 Adaptively (initial value: 0.1)
Our WFNN 3 27 78 Experimentally fixed: 0.08
WEM[16] 16 16 80 Experimentally fixed: 0.011
FNN[11] 4 128 152 Experimentally fixed: 0.044
WNNJ[12] * 11 94 Experimentally fixed: 0.214
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Table 2. The simulation results.

MSE
state x[cm] state y[cm] state @[o ]
Our WENN 0.0002695 0.0003747 0.000053
Our WENN 0.003814 0.004329 0.002589
WFM][16] 0.05734 0.07925 0.3254
FNNJ[11] 0.4186 0.9527 1.08903
WNN[12] 0.009312 0.007823 0.05426
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Fig. 7. Adaptive learning rates for the WFNN weights.

control input for reference trajectory and controlled trsjectory
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Fig. 8. Reference input and control input.

mobile robot and the adaptive learning rates for fast
convergence and stability, respectively. As a result, if
the control errors are changed, then the learning rates
are also changed in the case of fast convergence and
accuracy.

In our experiments, we use the mean squared error
(MSE) as the tracking performance for comparison of
performance with the FNN, the WFM and the WNN
controllers. The simulation results are as indicated in
Table 2. From these figures and from Table 2, we
confirm that the WFNN controller works better than
other controllers that use the FNN, the WFM and the

dyidu2

| . L
4 6 8 10 12 14 16 18 2
Time(sec)

Fig. 9. Feedforward Jacobian of each control input.

WNN respectively, although the tracking errors are
occurred in case that the direction is changed. In this
comparison, the network structure such as the number
of membership functions, the number of rules and the
learning rate, is experimentally determined via
numerous simulations.

Figs. 8 and 9 show the control inputs of a WFNN
controller and the feedforward Jacobian of a mobile
robot system, respectively.

5. CONCLUSIONS

In this paper, we have proposed a WEFNN based
direct adaptive control scheme for the solution of the
tracking problem of mobile robots. In our control
system, we have designed a FNN structure based on
wavelet that merges the advantages of the neural
network, fuzzy model and wavelet transform as a
controller. The control signals have been directly
obtained to minimize the difference between the
reference track and the pose of a mobile robot via the
GD method. In addition, an approach that has used
adaptive learning rates for the training of the WFNN
controller was driven via a Lyapunov stability analysis
to guarantee fast convergence, that is, learning rates
were adaptively determined to rapidly minimize the
state errors of a mobile robot. Finally, to evaluate the
performance of the proposed direct adaptive control
system using the WFNN, we have compared the
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control results of the WFNN controller with those of
the FNN, the WNN and the WFM controllers. As a
result, we have confirmed that our WFNN controller
works better than the FNN, the WNN and the WFM
controllers, although tracking errors are occurred
when the direction is changed.

APPENDIX A
Proof (b) of (32):

Let us define Gyemax (k) as G,
|G.,..(®)| . Then from (22) and the definition of

Theorem 1, the gradient of WFNN output u, with
respect to weight o

(k) =max,

can be written as

Jje
D,
J
fl)c( ) }c(k) R L]
ZI
Jj=1
then
a),c(k) R / OBj < 2 / ‘OBJ‘S‘OB],‘S”OB”.
D’y LU
Jj=1 j=1
Since R'uj <1 and Ruj <\/§ ,
2 My 2 U
j=1 j=1

we obtain G (0] <VR |05 <R|05|  and
max

have the maximum condition as follows:
2 2 2
G2 emax (K) = R }o 8, \max . (A1)

Hence, from Theorem 1 and (A1), (b) of Theorem 2
follows. O

Proof (c) and (d) of (33):
Let us define G, 4. (k) as G, ., (k)=

max, |G,, ,, (k)| Then from (23) and the definition
of Theorem 1, the gradient of WFNN output #, with

respect to weight m, , and d; , can be written as

o) - i 0B, @,
G tom, ,.d, (k)

i{ (NUM(mkn,dk") DEN(mkn,dkn)NUMU
3o, i) oy, _

DEN DEN*

<VHlo

Since

bz =22,

exp —lzz-n =-z
2 J

we obtain

|G...]<--

H NUM(m, )
z[”f DEN J

j=1

)exp[ ; 12,1] <1 and
1
n exp[—gzjsz <1,

~+

<JHlo,| [MJ

H DEN(m, YNUM
e

DEN?

and
G, )] <

DEN?

(|pEN)+VH)

DEN]’

DEN

=

X i(w, DEN(d, ,)NUM JH

0,
d,,

7" Imin

Je max

Therefore, we obtain each maximum condition as
follows:

> | |DEN{+JH

2 a—
Gme-ou®) = H ‘“’je gl IDEN|2 , (A2)
7" |min
G, (k)=
2 IOAkn (|DEN‘+\/—) (A3)
H\a)iu"
b 'dkn,, _|DEN|

While weights a and @ have an effect on only
one connected output, weights m and d have an
effect on all outputs. Therefore, for convergence
according to the effect of weights m and d,
additional expansion is needed.

Let us define Gm demax (k) as G, ... (k)=max,
2
| an d,c—out (k) (J;,c + Jy,c + ‘]20 \\ * Here G m,d,c—out (k)

is the maximum condition for each output u,
according to the effect of the weight {m,d} and
G? m.d.c.max (K) is the maximum condition for output
U . Then we obtain

@m0 NCIG o B2 + 2+ T3

max



562 Joon Seop Oh, Jin Bae Park, and Yoon Ho Choi

Thus,
G, () =C

[ |DEN|+VH

\d...|_|DEN

(A4)

2

@

max

2
} (et et doe)

max

min

2

G (k) =C |H|o, |

2 2 (AS)
. IOA,kn‘;mX (IZTZE)ZJ\‘[F';/E) (Jic + J;’c + J;,c)
k.n

"

min
max

Therefore, if the maximum conditions in (A2) and
(A3) are substituted by (A4) and (A5), respectively
from Theorem 1, (A4) and (AS), (c¢) and (d) of
Theorem 2 follow. 0
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