DOI QR코드

DOI QR Code

Wavelet-Based Fuzzy Modeling Using a DNA Coding Method

  • Joo, Young-Hoon (School of Electronic & Information Eng, Kunsan National University) ;
  • Lee, Veun-Woo (School of Electronic & Information Eng, Kunsan National University)
  • Published : 2003.06.01

Abstract

In this paper, we propose a new wavelet-based fuzzy modeling using a DNA coding method. Generally, it is well known that the DNA coding method is more diverse in the knowledge expression and better in the optimization performance than the genetic algorithm (GA) because it can encode more plentiful genetic informations based on the biological DNA. The proposed method can construct a fuzzy model using the wavelet transform, in which the coefficients are identified by the DNA coding method. Thus, we can effectively get the fuzzy model of the nonlinear system by using the advantages of both wavelet transform and DNA coding method. In order to demonstrate the superiority of the proposed method, it is compared with modeling method using the conventional GA.

Keywords

References

  1. L. A. Zadeh, 'Fuzzy Sets', Int, Jour. of Information control, vol. 8, pp. 338-353, 1965 https://doi.org/10.1016/S0019-9958(65)90241-X
  2. R. M. Tong, 'The Evaluation of Fuzzy Models Derivedform Experimental Data', Fuzzy Sets and Systems, vol.4, pp. 1-12, 1980 https://doi.org/10.1016/0165-0114(80)90059-7
  3. W. Pedrycz, 'An Identification Algorithm in Fuzzy Relational Systems', Fuzzy Sets and Systems, vol. 13, pp. 153-167, 1984 https://doi.org/10.1016/0165-0114(84)90015-0
  4. C. W. Xu, 'Fuzzy Model Identification and Self-leamingfor Dynamic Systems', IEEE Trans. Sys. Man. Cybem.,vol. 17, No. 4, pp. 683-689, 1987 https://doi.org/10.1109/TSMC.1987.289361
  5. M. Sugeno and T. Yasukawa, 'A Fuzzy Logic Based Approach to Qualitative Modeling', IEEE Trans. Fuzzy Sys., vol. 1, pp. 7-31, 1993 https://doi.org/10.1109/TFUZZ.1993.390281
  6. Y. H. Joo, H. S. Hwang, K. B. Kim, and K. B. Woo,'fuzzy System Modeling by Fuzzy Partition and GAHybrid Schemes', Fuzzy Sets and Systems, vol. 86, No.3, pp. 279-288, 1997 https://doi.org/10.1016/S0165-0114(95)00414-9
  7. Y. H. Joo, Y. W. Lee, J. B. Park, 'MGA Based FuzzyModel Identification', Electronics Letters, vol. 49D, No.8, pp. 407-414, 2000. 8
  8. T. Yoshikawa, T. Furuhashi, Y. Uchikawa, 'A Combination of DNA Coding Method with Pseudo-BacteriaI GA for Acquisition of Fuzzy Control Rules', The 1st Online Workshop on Soft Computing(WCSI), 1996. 8
  9. X. J. Zeng and M. G. Singh, 'Approximation AccuracyAnalysis of Fuzzy Systems with the Center-AverageDefuzzifier', Proc. FUZZ-IEEE/IFES'95, pp. 109-116,1995
  10. C. K. Lin and S. D. Wang, 'Fuzzy Modeling Using Wavelet transforms', Electronics Letter, vol. 32, pp.2255-2256, 1996 https://doi.org/10.1049/el:19961508
  11. A. Bruce, D. Donoho, H. Y. Gao, 'Wavelet Analysisfor Signal Processing', IEEE Spectrum, vol, 33, pp.26-35, 1996
  12. I. Daubechies, 'The Wavelet Transform, Time-frequency Localization and Signal analysis,' IEEE Trans. onInform. Theory, Vol. 36, pp. 961-1005, 1990 https://doi.org/10.1109/18.57199
  13. M. C. Mackey and L. Glass. 'Oscillation and Chaos in Physiological Control Systems', Science, vol. 197, pp.287-289, 1977 https://doi.org/10.1126/science.267326
  14. J. S. Jang. 'ANFIS: Adaptive-Network-based FuzzyInference Systems', IEEE Transactions on Systems,Man, and Cybernetics, 23(03):665-685, 1993 https://doi.org/10.1109/21.256541
  15. A. S. Lapedes and R. Farber. 'Nonlinear signalprocessing using neural networks: prediction and systemmodeling', Technical Report LA-UR-87-2662, 1987
  16. R. S. Crowder III, D. Touretzky, G. Hinton and T.Sejnowski. Predicting the Mackey-Glass time-series with cascade-correlation learning', Proceedings of the1990 Connectionist Models Summer School, pp.117-123
  17. C. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet Transforms: A Primer, Prentice Hall, 1996