• 제목/요약/키워드: wavelet classification

검색결과 275건 처리시간 0.03초

Comparison of various image fusion methods for impervious surface classification from VNREDSat-1

  • Luu, Hung V.;Pham, Manh V.;Man, Chuc D.;Bui, Hung Q.;Nguyen, Thanh T.N.
    • International Journal of Advanced Culture Technology
    • /
    • 제4권2호
    • /
    • pp.1-6
    • /
    • 2016
  • Impervious surfaces are important indicators for urban development monitoring. Accurate mapping of urban impervious surfaces with observational satellites, such as VNREDSat-1, remains challenging due to the spectral diversity not captured by an individual PAN image. In this article, five multi-resolution image fusion techniques were compared for the task of classifting urban impervious surfaces. The result shows that for VNREDSat-1 dataset, UNB and Wavelet tranformation methods are the best techniques in reserving spatial and spectral information of original MS image, respectively. However, the UNB technique gives the best results when it comes to impervious surface classification, especially in the case of shadow areas included in non-impervious surface group.

이미지 보간을 위한 의사결정나무 분류 기법의 적용 및 구현 (Adopting and Implementation of Decision Tree Classification Method for Image Interpolation)

  • 김동형
    • 디지털산업정보학회논문지
    • /
    • 제16권1호
    • /
    • pp.55-65
    • /
    • 2020
  • With the development of display hardware, image interpolation techniques have been used in various fields such as image zooming and medical imaging. Traditional image interpolation methods, such as bi-linear interpolation, bi-cubic interpolation and edge direction-based interpolation, perform interpolation in the spatial domain. Recently, interpolation techniques in the discrete cosine transform or wavelet domain are also proposed. Using these various existing interpolation methods and machine learning, we propose decision tree classification-based image interpolation methods. In other words, this paper is about the method of adaptively applying various existing interpolation methods, not the interpolation method itself. To obtain the decision model, we used Weka's J48 library with the C4.5 decision tree algorithm. The proposed method first constructs attribute set and select classes that means interpolation methods for classification model. And after training, interpolation is performed using different interpolation methods according to attributes characteristics. Simulation results show that the proposed method yields reasonable performance.

뉴로-퍼지를 이용한 혼합송전선로에서의 고장종류 및 고장구간 판별 알고리즘 (Fault Types-Classification and Section Discrimination Algorithm using Neuro-Fuzzy in Combined Transmission Lines)

  • 김경호;이종범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.534-536
    • /
    • 2003
  • It is important to classily fault types and discriminate fault section by any detecting technique for combined transmission lines. This paper proposes the technique to classify the fault types and fault section using neuro-fuzzy systems. Neuro-fuzzy systems are composed of two parts to perform different works. First, neuro-fuzzy system for fault type classification is performed with approximation coefficient of currents obtained by wavelet transform. Another neuro-fuzzy system discriminates the fault section between overhead and underground with detail coefficients of voltage and current. In this paper, neuro-fuzzy system shows the excellent results for classification of fault types and discrimination of fault section.

  • PDF

전력품질 분석을 위한 특징 추출 (Feature extraction for Power Quality analysis)

  • 이진목;홍덕표;최재호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 전기설비
    • /
    • pp.94-96
    • /
    • 2005
  • Power Quality(PQ) problems are various owing to a wide variety of causes so detection and classification of many kinds of PQ problems are awkward. Almost all studies about it were about getting good results by Neural Networks(NN) which get input features from as random variables, FFT and wavelet transform. However they are discontented with results because it is very difficult to classify all PQ items. A study about feature extraction becomes needed. Thus, this paper suggests effective way of using principle Component Analysis (PCA) for PQ Problem classification. PCA found more effective features among all features so it will help us to get more good result of classification.

  • PDF

뉴로-퍼지를 이용한 혼합송전선로에서의 고장종류, 고장구간 및 고장점 추정 알고리즘 (Fault Types-Classification, Section Discrimination and location Algorithm using Neuro-Fuzzy in Combined Transmission Lines)

  • 김경호;이종범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.412-415
    • /
    • 2003
  • It is important to classily fault types, discriminate fault section and calculate the fault location by any detecting technique for combined transmission lines. This paper proposes the technique to classily the fault types and fault section using neuro-fuzzy systems. Neuro-fuzzy systems are composed of three parts to perform different works. First, neuro-fuzzy system for fault type classification is performed with approximation coefficient of currents obtained by wavelet transform. The second neuro-fuzzy system discriminates the fault section between overhead and underground with detail coefficients of voltage and current. The last neuro-fuzzy system calculates the fault location with impedance in this paper, neuro-furry system shows the excellent results for classification of fault types and discrimination of fault section.

  • PDF

회전기계 결함신호 진단을 위한 신호처리 기술 개발 (Signal Processing Technology for Rotating Machinery Fault Signal Diagnosis)

  • 최병근;안병현;김용휘;이종명;이정훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.331-337
    • /
    • 2013
  • Acoustic Emission technique is widely applied to develop the early fault detection system, and the problem about a signal processing method for AE signal is mainly focused on. In the signal processing method, envelope analysis is a useful method to evaluate the bearing problems and Wavelet transform is a powerful method to detect faults occurred on rotating machinery. However, exact method for AE signal is not developed yet. Therefore, in this paper two methods which are Hilbert transform and DET for feature extraction. In addition, we evaluate the classification performance with varying the parameter from 2 to 15 for feature selection DET, 0.01 to 1.0 for the RBF kernel function of SVR, and the proposed algorithm achieved 94% classification accuracy with the parameter of the RBF 0.08, 12 feature selection.

  • PDF

영상합성을 통한 KOMPSAT-1 EOC의 분류정확도 및 환경정보 추출능력 향상 (Enhancement of Classification Accuracy and Environmental Information Extraction Ability for KOMPSAT-1 EOC using Image Fusion)

  • 하성룡;박대희;박상영
    • 한국지리정보학회지
    • /
    • 제5권2호
    • /
    • pp.16-24
    • /
    • 2002
  • 원격탐사 응용분야 중 토지피복 분류를 통한 지구환경의 원격탐지기법은 환경 관리, 도시계획 및 지리정보시스템의 응용분야에 광범위하게 사용되고 있는 접근방식이다. 본 연구는 다목적 실용위성(Korea Multi-Purpose Satellite : KOMPSAT)의 전자광학카메라(electro-optical camera : EOC)를 통해 취득한 영상의 토지피복 정보를 추출하는 방안을 제시하였다. 사용영상은 다중 분광정보를 보유하고 있는 공간해상도 30m의 Landsat TM과 6.6m의 공간해상도와 단일밴드로 구성되어 있는 KOMPSAT EOC영상이며, 연구 대상지역은 청주시 미호천 수계이다. 영상합성은 IHS(intensity hue saturation), HPF(high pass filtering), CN(color normalization), 그리고 Wavelet 변환방식을 적용하여 결과를 비교하였다. 합성된 영상은 RBF-NN(radial basis function neural network)과 ANN(artificial neural network)법을 이용하여 피복분류를 실시하였으며, 이상의 과정을 통해 최적 결과를 도출하는 영상합성 및 분류기법을 제시하였다.

  • PDF

Support Vector Machine Based Arrhythmia Classification Using Reduced Features

  • Song, Mi-Hye;Lee, Jeon;Cho, Sung-Pil;Lee, Kyoung-Joung;Yoo, Sun-Kook
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권4호
    • /
    • pp.571-579
    • /
    • 2005
  • In this paper, we proposed an algorithm for arrhythmia classification, which is associated with the reduction of feature dimensions by linear discriminant analysis (LDA) and a support vector machine (SVM) based classifier. Seventeen original input features were extracted from preprocessed signals by wavelet transform, and attempts were then made to reduce these to 4 features, the linear combination of original features, by LDA. The performance of the SVM classifier with reduced features by LDA showed higher than with that by principal component analysis (PCA) and even with original features. For a cross-validation procedure, this SVM classifier was compared with Multilayer Perceptrons (MLP) and Fuzzy Inference System (FIS) classifiers. When all classifiers used the same reduced features, the overall performance of the SVM classifier was comprehensively superior to all others. Especially, the accuracy of discrimination of normal sinus rhythm (NSR), arterial premature contraction (APC), supraventricular tachycardia (SVT), premature ventricular contraction (PVC), ventricular tachycardia (VT) and ventricular fibrillation (VF) were $99.307\%,\;99.274\%,\;99.854\%,\;98.344\%,\;99.441\%\;and\;99.883\%$, respectively. And, even with smaller learning data, the SVM classifier offered better performance than the MLP classifier.

블록 경계 영역 분류를 이용한 블록화 현상 제거 기법의 성능 비교 (Performance Comparison of Blocking Artifact Reduction Using a Block Boundary Region Classification)

  • 소현주;장익훈;김남철
    • 한국통신학회논문지
    • /
    • 제24권10B호
    • /
    • pp.1921-1936
    • /
    • 1999
  • 본 논문에서는 블록 기반 변환 부호화 영상에서 나타나는 블록화 현상을 분석하고 그 특성에 따라 각 블록 경계를 4개의 영역으로 분류하는 방법을 제안하였다. 그리고 제안한 블록 경계 영역 분류 방법을 이용하여 성능이 우수한 몇 가지 블록화 현상 제거 기법들의 성능을 비교하였다. 제안된 블록 경계 영역 분류 방법에서는 각 수평, 수직 블록 경계를 EQ 영역, BA 영역, 그리고 AE 영역의 4개의 영역으로 분류한다. 블록화 현상 제거기법으로는 LOT, Kim의 웨이브렛 영역에서의 필터링 방법, Yang의 POCS 방법, Paek의 POCS 방법, Jang의 CM 방법을 선택하였다. 실험결과, 제안한 블록 경계 영역 분류 방법으로 블록 경계의 영역들이 블록화 현상에 의한 불연속의 특성을 잘 나타내는 것을 알 수 있었다. 그리고 웨이블렛 변환을 이용하는 블록화 현상 제거 기법들이 대체적으로 우수한 성능을 나타냄을 알 수 있었다.

  • PDF

바이스태틱 레이다 측정 신호를 이용한 표적 인식에 관한 연구 (A Study on the Target Recognition Using Bistatic Measured Radar Signals)

  • 이성준;이승재;최인식
    • 한국전자파학회논문지
    • /
    • 제23권8호
    • /
    • pp.1002-1009
    • /
    • 2012
  • 본 연구는 미시간 주립대(Michigan State University)의 바이스태틱 레이다 시스템을 통하여 수집한 측정 데이터를 이용한 표적 구분에 관한 연구 결과이다. 본 연구에서는 먼저 F-14, Mig-29, F-22 스케일 모델에 대하여 $30^{\circ}$, $60^{\circ}$, $90^{\circ}$ 바이스태틱 각도에서의 측정을 수행하였다. 측정한 데이터로부터 시간-주파수 영역 해석법인 단시간 퓨리에 변환(Short Time Fourier Transform)과 연속 웨이브릿 변환(Continous Wavelet Transform)을 이용하여 특성 벡터를 추출하고, 신경망 구분기를 통하여 표적 구분 실험을 수행하였다. 실험 결과, 바이스태틱 각도에 따라 표적 구분 성능에 많은 변화가 있으며, 특히, $60^{\circ}$ 바이스태틱 각도에서 가장 좋은 구분 성능을 가짐을 알 수 있었다.