• Title/Summary/Keyword: waveguide technologies

Search Result 20, Processing Time 0.027 seconds

Silica-Based Planar Lightwave Circuits for WDM Applications

  • Okamoto, Katsunari;Inoue, Yasuyuki;Tanaka, Takuya;Ohmori, Yasuji
    • Electrical & Electronic Materials
    • /
    • v.11 no.11
    • /
    • pp.53-65
    • /
    • 1998
  • Planar lightwave circuits (PLCs) provide various important devices for optical wavelength division multiplexing (WDM) systems, subscriber networks and etc. This paper reviews the recent progress and future prospects of PLC technologies including arrayed-waveguide grating multiplexers, optical add/drop multiplexers, programmable dispersion equalizers and hybrid optoelectronics integration technologies.

  • PDF

Optimization Methodology of Multiple Air Hole Effects in Substrate Integrated Waveguide Applications

  • Kim, Jin-Yang;Chun, Dong-Wan;Ryu, Christopher Jayun;Lee, Hai-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.160-168
    • /
    • 2018
  • A wide spectrum of potential applications using substrate integrated waveguide (SIW) technologies in conjunction with air hole regions is introduced, and an efficient optimization methodology to cope with the multiple air hole effect in SIW applications is proposed. The methodology adopts a genetic algorithm to obtain optimum air hole dimensions for the specific propagation constant that can be accurately calculated using the recursive and closed form equations presented. The optimization results are evaluated by designing an SIW bandpass filter, and they show excellent performance. The optimization methodology using the proposed equations is effective in performance enhancement for the purposes of low loss and broadband SIW applications.

Frequency Characteristic Estimation of Ceramic Stem based TO Package using a Coplanar Waveguide Feed-line for 10 Gbps Data Transmission (10 Gbps급 데이터 전송용 coplanar waveguide feed-line을 이용한 세라믹 스템 기반 TO 패키지의 주파수 특성 예측)

  • Yoon, Euy-Sik;Lee, Myoung-Jin;Jung, Ji-Chae
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.4
    • /
    • pp.235-240
    • /
    • 2007
  • A ceramic stem based TO package incorporating a coplanar waveguide feed-line has been proposed allowing for 10 Gbps grade data transmission. The frequency response of a cylindrical feed-line fer a conventional metal based TO package was first analyzed, and compared with that of the CPW feed-line used for a ceramic based package such as a butterfly package. For the case where a DFB LD chip is packaged to an LD module, the measured 3 dB frequency bandwidths for the conventional and proposed packages were 3.5 GHz and 7.8 GHz respectively, which agree well with the theoretical results obtained from the modeling based on the small signal equivalent circuits. Consequently, we proposed a novel ceramic based TO package with a CPW feed-line in ceramic material as a stem to improve the frequency characteristics of the conventional one. And, its performance was theoretically observed to confirm that the proposed package provides even wider frequency bandwidth compared to the conventional one.

Scan Element Pattern and Scan Impedance of Open-Ended Waveguide Away Antenna (개방형 도파관 배열 안테나의 조향 소자 패턴 및 조향 임피던스에 관한 연구)

  • Yu, Je-Woo;Rah, Dong-Kyoon;Kim, Dong-Seok;Kim, Chan-Hong;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.7-14
    • /
    • 2007
  • In this paper, the scan characteristics of phased array antenna consisted of rectangular open-ended waveguide with a triangular grid are investigated. An infinite array structure is analyzed by numerically solving the integral equation for the electric field over the waveguide aperture using waveguide mode function and Floquet mode function. Next, SEP(Scan Element Pattern) and SI(Scan Impedance) characteristics are simulated by CST's MWS(Microwave Studio) and Ansoft's HFSS(High Frequency Structure Simulator) for the finite and infinite array structures. Also, validity of these approaches is verified by comparing the calculated and simulated results with the measured ones for an $8{\times}8$ subarray. Within 10.5 % fractional bandwidth in the X-band, the fabricated subarray showed the flat gain characteristic in the scan range of ${\pm}45^{\circ}C$ in the E-plane(azimuth) and ${\pm}20^{\circ}C$ in the H-plane(elevation), and also showed the return loss characteristic of less than -10 dB.

Recent development of polymer optical circuits for the next generation fiber to the home system

  • Kaino, Toshikuni
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.13-14
    • /
    • 2006
  • The use of soft-lithography instead of standard photolithography and dry etching technologies is attractive because inexpensive optical device can be realized. Polymerization using multi-photon absorption of materials is also a good method for optical waveguide fabrication. Laser induced self-writing technology of optical waveguide is also very simple and attractive. Using these processes, we can fabricate and interconnect optical circuits at once. In this presentation, several simple fabrication methods will be introduced. New optical loss evaluation method for polymer optical waveguides will also be presented

  • PDF

Breakdown and Destruction Characteristics of the CMOS IC by High Power Microwave (고출력 과도 전자파에 의한 CMOS IC의 오동작 및 파괴 특성)

  • Hong, Joo-Il;Hwang, Sun-Mook;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1282-1287
    • /
    • 2007
  • We investigated the damage of the CMOS IC which manufactured three different technologies by high power microwave. The tests separated the two methods in accordance with the types of the CMOS IC located inner waveguide. The only CMOS IC which was located inner waveguide was occurred breakdown below the max electric field (23.94kV/m) without destruction but the CMOS IC which was connected IC to line organically was located inner waveguide and it was occurred breakdown and destruction below the max electric field. Also destructed CMOS IC was removed their surface and a chip condition was analyzed by SEM. The SEM analysis of the damaged devices showed onchuipwire and bondwire destruction like melting due to thermal effect. The tested results are applied to the fundamental data which interprets the combination mechanism of the semiconductors from artificial electromagnetic wave environment and are applied to the data which understand electromagnetic wave effects of electronic equipments.

Optimization of Optical Coupling Properties of Active-Passive Butt Joint Structure in InP-Based Ridge Waveguide (InP계 리지 도파로 구조에서 활성층-수동층 버트 조인트의 광결합 효율 최적화 연구)

  • Song, Yeon Su;Myeong, Gi-Hwan;Kim, In;Yu, Joon Sang;Ryu, Sang-Wan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.47-54
    • /
    • 2020
  • Integration of active and passive waveguides is an essential component of the photonic integrated circuit and its elements. Butt joint is one of the important technologies to accomplish it with significant advantages. However, it suffers from high optical loss at the butt joint junction and need of accurate process control to align both waveguides. In this study, we used beam propagation method to simulate an integrated device composed of a laser diode and spot size converter (SSC). Two SSCs with different mode properties were combined with laser waveguide and optical coupling efficiency was simulated. The SSC with larger near field mode showed lower coupling efficiency, however its far field pattern was narrower and more symmetric. Tapered passive waveguide was utilized for enhancing the coupling efficiency and tolerance of waveguide offset at the butt joint without degrading the far field pattern. With this technique, high optical coupling efficiency of 89.6% with narrow far field divergence angle of 16°×16° was obtained.

Optical PCB and Packaging Technology (광 PCB 및 패키징 기술)

  • Ryu, Jin-Hwa;Kim, Dong-Min;Kim, Eung-Soo;Jeong, Myung-Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • According to increasing of data transfer rate, printed circuit board (PCB) is required improvement of transmission speed. Optical PCB and its packaging technology can be one of the solutions that overcome the limitations of conventional electrical PCB. The data transmission capacity will be increased 10 Tbps at 2015. To this end, studies on various OPCB technologies are being conducted. For cost-effective and high- performance OPCB, studies of optical coupling by polymer replication process are conducted. In this work, optical waveguide and optical fiber array block were sequentially fabricated by polymer pattern replication method. Using this method we successfully demonstrate low loss optical fiber coupling between optical waveguide and optical fiber arrays. And researches on flip chip bonding process and using electro-optic connectors for packaging are conducted.

Recent Advances in Filter Topologies and Realizations for Satellite Communications

  • Fahmi, Mohamed M.;Ruiz-Cruz, Jorge A.;Mansour, Rafaat R.;Zaki, Kawthar A.
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.625-632
    • /
    • 2011
  • This paper presents an overview of recent advances in radio frequency and microwave filter topologies for satellite communication systems. Many types of filters have been developed during the last years in order to satisfy the demands of modern applications in both terrestrial systems and onboard spacecrafts, leading to a great variety of aspects such as transfer functions, resonator implementations or coupling structures. This paper revisits some of the last advances in this area, including the modeling and full-wave simulation. Some recent designs using dual-mode cavities along with other novel implementations in ridge waveguide will be shown.

Breakdown and Destruction Characteristics of the TTL IC by the Artificial Microwave (인위적인 전자파에 의한 TTL IC의 오동작 및 파괴 특성)

  • Hong, Joo-Il;Hwang, Sun-Mook;Huh, Chang-Su
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.27-32
    • /
    • 2007
  • We investigated the damage of the TTL ICs which manufactured five different technologies by artificial microwave. The artificial microwave was rated at a microwave output from 0 to 1000W, at a frequency of 2.45GHz. The microwave power was extracted into a standard rectangular waveguide(WR-340) and TTL ICs were located into the waveguide. TTL ICs were damaged two types. One is breakdown which means no physical damage is done to the system and after a reset the system is going back into function. The other is destruction which means a physical damage of the system so that the system will not recover without a hardware repair. TTL SN74S08N and SN74ALS08N devices get a breakdown and destruction occurred but TTL SN74LS08N, SN74AS08N and 74F08N devices get a destruction occurred. Also destructed TTL ICs were removed their surface and a chip conditions were analyzed by SEM. The SEM analysis of the damaged devices showed onchipwire and bondwire destruction like melting due to thermal effect. The tested results expect to be applied to the fundamental data which interprets the combination mechanism of the semiconductors from artificial microwave environment.