• Title/Summary/Keyword: wave reflection and transmission

Search Result 239, Processing Time 0.023 seconds

A Study on the Predictive Model of Propagation Path Loss in Millimeter-Wave Band (밀리미터파 대역에서 전파경로손실 예측 모델)

  • Kim, Song-Min
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.2
    • /
    • pp.23-28
    • /
    • 2005
  • This study was to suggest the propagation path loss and predictive model of propagation path analysis in order to apply the frequency in the millimeter-wave band to the real time inter-vehicle communication system. This study was to suppose the case of inter-vehicle communication on the one-way two-lanes road in the big cites with a lot of traffic jams in order to analyze the effect by the reflected wave of multipath. As a simulation of suggested model, it found out that the propagation path by the reflected wave was about 0.1[m]$\sim$5.1[m] longer than the one by the direct wave during the transmission of 100[m] wave direct path. Also, as a result of comparing the propagation path loss, the loss would be about -0.8[dB]$\sim$-4.2[dB] larger in case of wall reflection and -0.8[dB]$\sim$-1[dB] vehicle reflection. From the result above, this researcher found out that the path loss of reflected wave produced by the walls was about -3.2[dB] larger than the path loss produced by the adjacent vehicles.

Wave Propagation Characteristics along a Catenary with Arbitrary Boundary Conditions (임의의 경계조건을 갖는 가선계의 파동 현상에 대한 고찰)

  • 김양한;박연규;김시문;노현석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2059-2071
    • /
    • 1992
  • The characteristics of wave propagation along a catenary in rail electrification system depend on the boundary impedance, characteristic impedance of catenary, and the contact force of pantograph moving along the catenary. In this study, the wave propagation along catenary is studied with arbitrary boundary conditions and characteristic impedance of catenary. The reflection and transmission of waves through the boundaries of catenary and the propagation of waves along the catenary are found to be dependent on the wave length.

Analysis of Multi-directional Random Waves Propagating over Multi Arrayed Impermeable Submerged Breakwater (다열 불투과성 수중방파제를 통과하는 다방향 불규칙파랑의 해석)

  • Jung, Jae-Sang;Kang, Kyu-Young;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.1
    • /
    • pp.29-37
    • /
    • 2007
  • In this study, transmission and reflection of multi-directional random waves propagating over impermeable submerged breakwaters are calculated by using eigenfunction expansion method. A series of mutiderectional random waves is generated by using the Bretschneider-Mitsuyasu frequency and Mitsuyasu type directional spectrum. Strong reflection is occurred at the Bragg reflection condition of the peak frequency. If the row of breakwaters is fixed at 3 and the relative height of breakwater is fixed at 0.6, more than 25% of incident wave energy is reflected to offshore. It is also found that the reflection of directionally spreading random waves increases as the maximum spreading parameter $s_{max}$ increases.

Analysis of Switching Overvoltage in 345kV Underground and Combined Transmission Systems (345kV 지중 및 혼합 송전계통에서의 개폐 과전압 해석)

  • 정채균;이종범;강지원
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.12
    • /
    • pp.713-721
    • /
    • 2003
  • This paper analyzes the switching overvoltage occurred on 345kV underground power cable system as well as combined transmission system using EMTP. Cable length and closing time, preinsertion resistance have effect on switching overvoltage. Therefore, this paper analyzes the switching overvoltage occurred on conductor and sheath with change of those parameters. Specially, the cross bonding position becomes discontinuity point because of the difference between surge impedance of metal sheath and that of lead cable. Thus, the transmission and the reflection of traveling wave complexly occur at this connection point. According to these influences, voltage between sheath and earth as well as voltage between joint boxes rise. Time to crest point of switching overvoltage is longer than lightning overvoltage. Even though the voltage induced by switching surge is smaller than lightning surge, that voltage may have serious effect on the metal sheath. Therefore, this paper also analyses the reduction effect of switching overvoltage when the preinsertion resistance of circuit breaker is considered.

Wave Control by a Surface-Mounted Horizontal Membrane (수면 위에 고정된 수평막에 의한 파랑제어)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.83-91
    • /
    • 2004
  • The performance of wave control by a surface-mounted horizontal membrane is analyzed in the frame of linear potential theory. To employ the eigenfunction expansion method, the fluid domain is divided into two regions i.e. region without membrane and membrane-covered region. By matching the each solutions at boundaries of adjacent regions, the complete solution is obtained. The present analytical method solving the scattering problem directly gives the same results as Cho and Kim(1998)'s method solving the diffraction and the radiation problem separately. To verify the developed model, the model test with a surface-mounted horizontal membrane is conducted at the wave tank(36m${\times}$0.91m${\times}$l.22m). The analytic results are in good agreement with the experimental results. The reflection and transmission coefficients are investigated according to the change of membrane tension, length and incident frequencies.

Hydraulic Characteristics and Dynamic Behaviors of Floating Breakwater with Vertical Plates (연직판형 부소파제의 수리학적 특성과 동적거동)

  • SOHN Byung-Kyu;YANG Yong-Su;JEONG Seong-Jae;SHIN Jong-Keon;KIM Do-Sam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.5
    • /
    • pp.316-322
    • /
    • 2005
  • In order to develop a floating breakwater, which can efficiently control long period waves, vertical plates are attached in pontoon. Wave control and dynamic behaviors of the newly developed vertical plates type are verified from numerical analysis and hydraulic experiment. As a result, for the wave control and energy dissipation, the newly developed vertical plates type is more efficient than the conventional pontoon type. For the floating body motion, the wave transmission, depending on incident wave period, is decreased at the natural frequency. Dimensionless drift distance has similar trend of the reflection rate of wave transformation near natural frequency except maximum and minimum values. Dimensionless maximum tension is 17 percent of the weight of floating breakwater in case of the conventional pontoon type and 18 percent or 14 percent in case of the newly developed vertical plates type. Thus, it is shown that the wave control is improved by the vertical plates type. In addition, by adjusting the interval of the front and back vertical plate, we would control proper wave control.

Wave Screening Performance of the Submerged Breakwater With Various Crown Widths (폭 변화에 따른 잠제의 파랑 차단 성능)

  • Cho Won Chul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.4
    • /
    • pp.206-212
    • /
    • 2004
  • The numerical analysis on the wave screening performance of the submerged breakwater with various crown widths is presented. The fluid motion is considered as linearized two dimensional potential flow and the finite element method is used to analyze the wave screening performance of the submerged breakwater. It is found that single-submerged breakwater with large crown width shows the most effective wave screening performance and single-submerged breakwater with small crown width also shows fairly good wave screening performance but its effectiveness is less than that of single-submerged breakwater with large crown width. However, double- or triple-submerged breakwater with small crown width shows more effective wave screening performance than that of single- or double-submerged breakwater with large crown width. It is expected that the submerged breakwater with small crown width is economical because it reduces the size of structure.

Computation of Wave Propagation by Scatter Method Associated with Variational Approximation (변분근사식과 연계된 산란체법에 의한 파랑변형 계산)

  • Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.553-563
    • /
    • 2008
  • If an arbitrary topography is approximated to a number of vertical steps, both variational approximation and eigenfunction expansion method can be used to compute linear wave transformation over the bottom. In this study a scatterer method associated with variational approximation is proposed to calculate reflection and transmission coefficients. Present method may be shown to be more simple and direct than the successive-application-matrix method by O'Hare and Davies. And Several numerical examples are given which are in good agreement with existing results.

Comparison between Variational Approximation and Eigenfunction Expansion Method for Wave Transformation over a Step Bottom (단일계단 지형에서 변분근사법과 고유함수 전개법에 의한 파랑변형 비교)

  • Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.91-107
    • /
    • 2009
  • In order to compute linear wave transformation over a single step bottom, both variational approximation and eigenfunction expansion method are used. Both numerical results are in good agreement for reflection and transmission coefficients, surface displacement respectively. However x velocity profiles at the boundary of step are seen to be different to each other even though x velocity matching condition is used.

Wave Transformation of a Rubble-Mound Breakwater (사석방파제에 의한 파랑변형에 관한 연구)

  • Kang, I. S.;Kwak, K. S.;Kim, D. S.;Yang, Y. M.
    • Journal of Korean Port Research
    • /
    • v.8 no.2
    • /
    • pp.57-65
    • /
    • 1994
  • A theoretical formulation is performed to investigate the wave reflection and transmission ratios by a submerged multi-layered rubble-mound breakwater. This theory, which is based on the linear boundary integral method, can be extended to the multi-layered breakwater with arbitrary cross section. In the theoretical analysis evanescent mode wave is not considered, since fictitious open boundaries are put on the places far from the structure. Therefore the mathematical presentation may be simpler, and computational time shorter. The validity of obtained numerical results is demonstrated by comparing with ones of impermeable and permeable breakwaters. Comparison shows resonable agreement. On the basis of these verifications this theory is applied to the one and two-layered submerged rubble-mound breakwater with trapezoidal type.

  • PDF