• 제목/요약/키워드: wave propagation velocity

검색결과 412건 처리시간 0.02초

Numerical investigation of detonation combustion wave propagation in pulse detonation combustor with nozzle

  • Debnath, Pinku;Pandey, K.M.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권3호
    • /
    • pp.187-202
    • /
    • 2020
  • The exhaust nozzle serves back pressure of Pulse detonation combustor, so combustion chamber gets sufficient pressure for propulsion. In this context recent researches are focused on influence of nozzle effect on single cycle detonation wave propagation and propulsion performance of PDE. The effects of various nozzles like convergent-divergent nozzle, convergent nozzle, divergent nozzle and without nozzle at exit section of detonation tubes were computationally investigated to seek the desired propulsion performance. Further the effect of divergent nozzle length and half angle on detonation wave structure was analyzed. The simulations have been done using Ansys 14 Fluent platform. The LES turbulence model was used to simulate the combustion wave reacting flows in combustor with standard wall function. From these numerical simulations among four acquaint nozzles the highest thrust augmentation could be attained in divergent nozzle geometry and detonation wave propagation velocity eventually reaches to 1830 m/s, which is near about C-J velocity. Smaller the divergent nozzle half angle has a significant effect on faster detonation wave propagation.

Probabilistic Q-system for rock classification considering shear wave propagation in jointed rock mass

  • Kim, Ji-Won;Chong, Song-Hun;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제30권5호
    • /
    • pp.449-460
    • /
    • 2022
  • Safe underground construction in a rock mass requires adequate ground investigation and effective determination of rock conditions. The estimation of rock mass behavior is difficult, because rock masses are innately anisotropic and heterogeneous at different scales and are affected by various environmental factors. Quantitative rock mass classification systems, such as the Q-system and rock mass rating, are widely used for characterization and engineering design. The measurement of rock classification parameters is subjective and can vary among observers, resulting in questionable accuracy. Geophysical investigation methods, such as seismic surveys, have also been used for ground characterization. Torsional shear wave propagation characteristics in cylindrical rods are equal to that in an infinite media. A probabilistic quantitative relationship between the Q-value and shear wave velocity is thus investigated considering long-wavelength wave propagation in equivalent continuum jointed rock masses. Individual Q-system parameters are correlated with stress-dependent shear wave velocities in jointed rocks using experimental and numerical methods. The relationship between the Q-value and the shear wave velocity is normalized using a defined reference condition. This relationship is further improved using probabilistic analysis to remove unrealistic data and to suggest a range of Q-values for a given wave velocity. The proposed probabilistic Q-value estimation is then compared with field measurements and cross-hole seismic test data to verify its applicability.

적층 Unidirectional CFRP 판의 이방성과 Lamb wave의 $S_0$ Mode 군속도의 관계 (The Relationship Between Group velocity of Lamb wave $S_0$ Mode and Anisotropy in Laminated Unidirectional CFRP Plates)

  • 이정기;김영환;이승석;김호철
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.272-277
    • /
    • 2004
  • The elastic waves in the plate are dispersive waves with the characteristics of Lamb waves. However, $S_0$ symmetric mode is less dispersive in the frequency region less than first cut-off frequency. And, in anisotropic plates such as CFRP plates, the propagation velocities vary with the direction. So, the wave vector direction to be the phase velocity direction is not accord with the energy flow direction to be the group velocity direction. In this work, the group velocities of the $S_0$ symmetric mode less than the first cut-off frequency was analyzed with the group velocity dispersion curves in unidirectional CFRP plate. And, the group velocity curve obtained by the group velocity dispersion curves are compared with the measured velocities as varied the propagation direction of the Lamb wave. The measured velocities are good agreement with the corrected group velocity curve except near the fiber direction which is called the cusp region. When the propagation direction is not accorded with the principal axis, the direction of the group velocities declines to the fiber direction in the unidirectional CFRP plates. This implies that the energy propagates preferentially toward fiber direction.

  • PDF

길이방향의 전단응력을 받은 직교이방성 원판에 내재된 외부균열의 등속전파 응력확대계수 $K_{III}$ (Dynamic Stress Intensity Factor $K_{III}$ of Crack Propagating with Constant Velocity in Orthotropic Disk Plate Subjected to Longitudinal Shear Stress)

  • 최상인
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.69-79
    • /
    • 1996
  • Dynamic stress intensity factors are derives when the crack is propagating with constant velocity under longitudinal shear stress in orthotropic disk plate. General stress fields of crack tip propagating with constant velocity and least square method are used to obtain the dynamic stress intensity factor. The dynamic stress intensity factors of GLV/GTV=1(=isotropic material or transversely isotropic material) which is obtained in out study nearly coincides with Chiang's results when mode Ⅲ stress is applied to boundary of isotropic disk. The D.S.I.F. of mode Ⅲ stress is greater when α(=angle of crack propagation direction with fiber direction) is 90° than that when α is 0°. In case of a/D(a:crack length, D:disk diameter)<0. 58, the faster crack propagation velocity, the less D.S.I.F. but when crack propagation velocity arrive on ghear stress wave velocity, the D.S.I.F. but when crack propagation velocity arrive on shear stress wave velocity, the D.S.I.F. unexpectedly increases and decreases to zero.

  • PDF

전파속도를 알수 없는 재료에서의 AE 발생위치 온라인 측정 (AE source on-line localization on material with unknown acoustic wave propagation velocity)

  • 장경영;이원흠;김달중
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.688-694
    • /
    • 1998
  • The ability to locate the defects in materials is one of the major attrations of the acoustic emission(AE) technique. The most conventional method for planar AE source localization is to place three or more AE sensors on the plate and to determine the source position by measuring the differences in the arrival times of the AE wave at the sensors, which is called as triangulation method. But this method can not be applied in the material of which elastic wave propagtion velocity is not known. In this paper, we propose two methods, vector method and error minimization method, for AE source location on the material with unknown AE wave velocity. In this method, it is not needed to know the propagation velocity previously, that is, we can apply this method to arbitrary material of which properties are not known exactly. Also, in this paper, the robustness to the error in the measurement of time differences are discussed for both methods. Finally, in order to evaluate the actual performances, experiments using a pencil lead break as the AE source were carried out on the aluminum plate.

유한요소법에 의한 등방성과 이방성 재료의 저속 충격 해석 (Low-Velocity Impact Analyses of Isotropic and Anisotropic Materials by the Finite Element Method)

  • 안국찬;박형렬
    • 한국안전학회지
    • /
    • 제16권1호
    • /
    • pp.9-17
    • /
    • 2001
  • The purpose of this research is to analyze the impact resposes(impulsive stress and strain etc.) of anisotropic materials subjected to the low-velocity impact. For this purpose, a beam finite element program based on modified higher-order beam theory for anisotropic materials are developed and used to simulate the dynamic behaviors [contact force, displacement of ball and target, strain(stress) response histories] according to the changes of material property, stacking sequence, velocity and dimension etc.. Test materials for simulation are composed of $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{2s} and [90^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}/90^{\circ}]_{2s}$ stacking sequences. Finally, the results of this simulation are compared with those of wave propagation theory and then the impact responses and wave propagation phenomena are investigated.

  • PDF

On Propagation of Love waves in dry sandy medium sandwiched between fiber-reinforced layer and prestressed porous half-space

  • Gupta, Shishir;Ahmed, Mostaid
    • Earthquakes and Structures
    • /
    • 제12권6호
    • /
    • pp.619-628
    • /
    • 2017
  • The intent of this paper is to investigate the propagation of Love waves in a dry sandy medium sandwiched between fiber-reinforced layer and prestressed porous half-space. Separate displacement components have been deduced in order to characterize the dynamics of individual materials. Using suitable boundary conditions, the frequency equation has been derived by means of separation of variables which reveals the significant role of reinforcement parameters, sandiness, thickness of layers, porosity and prestress on the wave propagation. The phase velocity of the Love wave has been discussed in accordance with its typical cases. In both cases when fiber-reinforced and dry sandy media are absent, the derived equation of Love type wave coincides with the classical Love wave equation. Numerical computations have been performed in order to graphically illustrate the dependencies of different parameters on phase velocity of Love waves. It is observed that the phase velocity decreases with the increase of parameters pertaining to reinforcement and prestress. The results have certain potential applications in earthquake seismology and civil engineering.

터널 탐사를 위한 탄성파 전파 양상에 관한 연구 (A Study of Seismic Wave Propagation for Tunnel Exploration)

  • 서백수;오석훈;손권익
    • 한국지구과학회지
    • /
    • 제27권5호
    • /
    • pp.539-547
    • /
    • 2006
  • 본 논문은 지하 내부에 존재하는 공동의 존재를 밝히기 위한 시추공 토모그래피 탐사에 있어서 보다 정확한 자료의 역산을 위해 공동 주위에서의 파의 전파 양상을 규명하기 위하는데 목적이 있다. 터널 탐사에서 주로 사용되는 파원의 주파수는 2-5 kHz에 달하며, 자료의 역산에 있어서 파장의 1/10 내외의 격자간격을 설정하는 것이 적합한 것으로 알려져 있다. 공동을 지나는 탄성파의 전파는 공동 내부의 탄성파 속도에 따라 공동을 우회 또는 투과하며, 우회하는 탄성파는 공동의 탄성파 속도의 영향을 받지만 주로 모암의 탄성파 속도로 전파한다. 또한 모암의 탄성파 속도와 공동의 탄성파 속도 사이의 편차가 작아질수록 탄성파는 공동을 투과하는 특성을 보인다.

Analysis of nonlocal Kelvin's model for embedded microtubules: Via viscoelastic medium

  • Taj, Muhammad;Khadimallah, Mohamed A.;Hussain, Muzamal;Khedher, Khaled Mohamed;Shamim, Raja A.;Ahmad, Manzoor;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • 제26권6호
    • /
    • pp.809-817
    • /
    • 2020
  • In cells, the microtubules are surrounded by viscoelastic medium. Microtubules, though very small in size, perform a vital role in transportation of protein and in maintaining the cell shape. During performing these functions waves propagate and this propagation of waves has been investigated using nonlocal elastic theory. But the effect of surrounding medium was not taken into account. To fill this gap, this study considers the viscoelastic medium along with nonlocal elastic theory. The analytical formulas of the velocity of waves, and the results reveal that the presence of medium reduces the velocity. The axisymmetric and nonaxisymmetric waves are separately discussed. Furthermore, the results are compared with the results gained from the studies of free microtubules. The presence of medium around microtubules results in the increase of the flexural rigidity causing a significant decrease in radial wave velocity as compared to axial and circumferential wave velocities. The effect of viscoelastic medium is more obvious on radial wave velocity, to a lesser extent on torsional wave velocity and least on longitudinal wave velocity.

저속 충격을 받는 적층 복합재의 응력파 전파에 관한 연구 (A Study on the Stress Wave Propagation of Composite Laminate Subjected to Low-Velocity Impact)

  • 안국찬;김문생;김규남
    • 대한기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.9-19
    • /
    • 1989
  • 본 논문에서는 복합 적층판의 이론적 충격 응답을 통한 충격 응력 및 충격파 전파를 해석하기 위하여 이질, 이방성 판에 전단 변형을 고려한 Whitney와 Pagano의 이론에 기초를 두고 정적 접촉법칙과 연계한 동적 유한요소해석(FEA)을 하여, 이 중 충격 접촉력에 관하여는 각각 [0。/45。/0。/-45。/0。]$_{2s}$와 [90。/45。/90。/-45。/90。]$_{2s}$의 두 적층 형태를 가지는 흑연/에폭시와 유리/ 에폭시 복합 재료에 대한 강구에 의한 충격 해석을 하여, Yang의 식에 의한 최대 접촉력과 비교 검토하였고, 다음 변형율 파형을 파동 전파(wave propagation) 이론에 의해 비교 검토하므로써 본 이론해석의 타당성을 입증하였고, 재료 및 적층 형태에 따른 충격 응답, 충격 응력 및 충격파 전파 특성에 대하여 연구하였다.하였다.