Browse > Article
http://dx.doi.org/10.12989/gae.2022.30.5.449

Probabilistic Q-system for rock classification considering shear wave propagation in jointed rock mass  

Kim, Ji-Won (Disposal Performance Demonstration Research Division, Korea Atomic Energy Research Institute)
Chong, Song-Hun (Department of Civil Engineering, Sunchon National University)
Cho, Gye-Chun (Department of Civil and Environmental Engineering, KAIST)
Publication Information
Geomechanics and Engineering / v.30, no.5, 2022 , pp. 449-460 More about this Journal
Abstract
Safe underground construction in a rock mass requires adequate ground investigation and effective determination of rock conditions. The estimation of rock mass behavior is difficult, because rock masses are innately anisotropic and heterogeneous at different scales and are affected by various environmental factors. Quantitative rock mass classification systems, such as the Q-system and rock mass rating, are widely used for characterization and engineering design. The measurement of rock classification parameters is subjective and can vary among observers, resulting in questionable accuracy. Geophysical investigation methods, such as seismic surveys, have also been used for ground characterization. Torsional shear wave propagation characteristics in cylindrical rods are equal to that in an infinite media. A probabilistic quantitative relationship between the Q-value and shear wave velocity is thus investigated considering long-wavelength wave propagation in equivalent continuum jointed rock masses. Individual Q-system parameters are correlated with stress-dependent shear wave velocities in jointed rocks using experimental and numerical methods. The relationship between the Q-value and the shear wave velocity is normalized using a defined reference condition. This relationship is further improved using probabilistic analysis to remove unrealistic data and to suggest a range of Q-values for a given wave velocity. The proposed probabilistic Q-value estimation is then compared with field measurements and cross-hole seismic test data to verify its applicability.
Keywords
rock mass classification; Q-system; jointed rock mass; shear wave velocity; equivalent continuum;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Li, J., Li, H., Jiao, Y., Liu, Y., Xia, X. and Yu, C. (2014), "Analysis for oblique wave propagation across filled joints based on thin-layer interface model", J. Appl. Geophys., 102, 39-46. https://doi.org/10.1016/j.jappgeo.2013.11.014.   DOI
2 Mohd-Nordin, M.M., Song, K.I., Cho, G.C. and Mohamed, Z. (2014), "Long-wavelength elastic wave propagation across naturally fractured rock masses", Rock. Mech. Rock. Eng., 47(2), 561-573. https://doi.org/10.1007/s00603-013-0448-x.   DOI
3 NGI (2013), Using the Q-System-Rock Mass Classification and Support Design, NGI Publication, Oslo, Norway 54 p.
4 Palmstrom, A. (1996), "Characterizing rock masses by the RMi for use in practical rock engineering: Part 1: The development of the Rock Mass index (RMi)", Tunn. Undergr. Space Technol., 11(2), 175-188. https://doi.org/10.1016/0886-7798(96)00015-6.   DOI
5 Barton, N., Lien, R. and Lunde, J. (1974), "Engineering classification of rock masses for the design of tunnel support", Rock Mech., 6(4), 189-236. https://doi.org/10.1007/BF01239496.   DOI
6 Bery, A.A. and Rosli, S. (2012), "Correlation of seismic P-wave velocities with engineering parameters (N value and rock quality) for tropical environmental study", Int. J. Geosci., 3(4), 749-757. https://doi.org/10.4236/ijg.2012.34075.   DOI
7 Bieniawski, Z.T. (1973), "Engineering classification of jointed rock masses", Civil Eng. Sivil. Ing., 1973(12), 335-343.
8 Carter, T.G. (2010), "Applicability of classifications for tunnelling-valuable for improving insight, but problematic for contractual support definition or final design", Proc. WTC., Vancouver, Paper 00401, Session 6c, 8.
9 Cha, M., Cho, G.C. and Santamarina, J.C. (2009), "Long-wavelength P-wave and S-wave propagation in jointed rock masses", Geophys., 74(5), E205-E214. https://doi.org/10.1190/1.3196240.   DOI
10 Chai, S., Li, J., Zhang, Q., Li, H. and Li, N. (2016), "Stress wave propagation across a rock mass with two non-parallel joints", Rock Mech. Rock. Eng., 49(10), 4023-4032. https://doi.org/10.1007/s00603-016-1068-z.   DOI
11 Chong, S.H., Kim, J.W. and Cho, G.C. (2014), "Rock mass dynamic test apparatus for estimating the strain-dependent dynamic properties of jointed rock masses", Geotech. Test. J., 37(2), 311-318. https://doi.org/10.1520/GTJ20120127.   DOI
12 Chong, S.H., Song, K.I. and Cho, G.C. (2021), "Development of equivalent stress-and strain-dependent model for jointed rock mass and its application to underground structure", KSCE J. Civil Eng., 25(12), 4887-4896. https://doi.org/10.1007/s12205-021-0616-6.   DOI
13 Schoenberg, M. and Muir, F. (1989), "A calculus for finely layered anisotropic media", Geophys., 54(5), 581-589. https://doi.org/10.1190/1.1442685.   DOI
14 Perino, A., Zhu, J., Li, J., Barla, G. and Zhao, J. (2010), "Theoretical methods for wave propagation across jointed rock masses", Rock. Mech. Rock. Eng., 43(6), 799-809. https://doi.org/10.1007/s00603-010-0114-5.   DOI
15 Ryu, H.H., Joo, G.W., Cho, G.C., Kim, K.Y. and Lim, Y.D. (2013), "Probabilistic rock mass classification using electrical resistivity-Theoretical approach of relationship between RMR and electrical resistivity", J. Korean Tunn Undergr Sp., 15(2), 97-111. https://doi.org/10.9711/KTAJ.2013.15.2.097.   DOI
16 Ryu, H.H., Oh, T.M., Cho, G.C., Kim, K.Y., Lee, K.R. and Lee, D.S. (2014), "Probabilistic relationship between Q-value and electrical resistivity", KSCE J. Civil Eng., 18(3), 780-786. https://doi.org/10.1007/s12205-014-0339-z.   DOI
17 Sebastian, R. and Sitharam, T.G. (2018), "Resonant column tests and nonlinear elasticity in simulated rocks", Rock Mech. Rock Eng., 51(1), 155-172. https://doi.org/10.1007/s00603-017-1308-x.   DOI
18 Wyllie, M.R.J., Gregory, A.R. and Gardner, G.H.F. (1958), "An experimental investigation of factors affecting elastic wave velocities in porous media", Geophys., 23(3), 459-493. https://doi.org/10.1190/1.1438493.   DOI
19 Zhao, Z., Jing, H., Shi, X., Yang, L., Yin, Q. and Gao, Y. (2021), "Study on bearing characteristic of rock mass with different structures: Physical modeling", Geomech. Eng., 25(3), 179-194. https://doi.org/10.12989/gae.2021.25.3.179.   DOI
20 Zerwer, A., Cascante, G. and Hutchinson, J. (2002), "Parameter estimation in finite element simulations of Rayleigh waves", J Geotech. Geoenviron., 128(3), 250-261. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:3(250).   DOI
21 Cook, N.G. (1992), "Natural joints in rock: mechanical, hydraulic and seismic behaviour and properties under normal stress", Int. J. Rock Mech. Min. Sci., 29(3), 198-223. https://doi.org/10.1016/0148-9062(92)93656-5.   DOI
22 Deere, D.U. (1963), "Technical description of rock cores for engineering purpose", Rock Mech. Eng. Geol., 1(1), 17-22.
23 Edelbro, C., Sjoberg, J. and Nordlund, E. (2007), "A quantitative comparison of strength criteria for hard rock masses", Tunn. Undergr. Space Technol., 22(1), 57-68. https://doi.org/10.1016/j.tust.2006.02.003.   DOI
24 El-Naqa, A. (1996), "Assessment of geomechanical characterization of a rock mass using a seismic geophysical technique", Geotech. Geol. Eng., 14(4), 291-305. https://doi.org/10.1007/BF00421945.   DOI
25 Isik, N.S., Doyuran, V. and Ulusay, R. (2008), "Assessment of deformation modulus of weak rock masses from pressuremeter tests and seismic surveys", Bull. Eng. Geol. Environ., 67(3), 293-304. https://doi.org/10.1007/s10064-008-0163-0.   DOI
26 Fratta, D. and Santamarina, J. (2002), "Shear wave propagation in jointed rock: State of stress", Geotechnique, 52(7), 495-505. https://doi.org/10.1680/geot.2002.52.7.495.   DOI
27 Gong, L., Nemcik, J. and Ren, T. (2018), "Numerical simulation of the shear behavior of rock joints filled with unsaturated soil", Int. J. Geomech., 18(9), 04018112. http://doi.org/10.1061/(ASCE)GM.1943-5622.0001253.   DOI
28 Hong, C.H., Ryu, H.H., Oh, T.M. and Cho, G.C. (2020), "Probabilistic rock mass rating estimation using electrical resistivity", KSCE J. Civil Eng., 24, 2224-2231. https://doi.org/10.1007/s12205-020-1315-4.   DOI
29 Itasca, C. (2013), 3DEC, Software, Version 5.0, Minneapolis.
30 Kahraman, S. (2002), "The effects of fracture roughness on P-wave velocity", Eng. Geol., 63(3-4), 347-350. https://doi.org/10.1016/S0013-7952(01)00089-8.   DOI
31 Salaamah, A.F., Fathani, T.F. and Wilopo, W. (2018), "Correlation of P-wave velocity with rock quality designation (RQD) in volcanic rocks", J. Appl. Geol., 3(2), 62-72. http://doi.org/10.22146/jag.48594.   DOI
32 Bednarek, L. and Majcherczyk, T. (2020), "An analysis of rock mass characteristics which influence the choice of support", Geomech. Eng., 21(4), 371-377. https://doi.org/10.12989/gae.2020.21.4.371.   DOI
33 Cai, J. and Zhao, J. (2000), "Effects of multiple parallel fractures on apparent attenuation of stress waves in rock masses", Int. J. Rock Mech. Min. Sci., 37(4), 661-682. https://doi.org/10.1016/S1365-1609(00)00013-7.   DOI
34 Cha, Y.H., Kang, J.S. and Jo, C.H. (2006), "Application of linear-array microtremor surveys for rock mass classification in urban tunnel design", Expl. Geophys., 37(1), 108-113. https://doi.org/10.1071/EG06108.   DOI
35 Chong, S.H., Kim, J.W., Cho, G.C. and Song, K.I. (2020), "Preliminary numerical study on long-wavelength wave propagation in a jointed rock mass", Geomech. Eng., 21(3), 227-236. https://doi.org/10.12989/gae.2020.21.3.227.   DOI
36 Li, J., Ma, G. and Zhao, J. (2010), "An equivalent viscoelastic model for rock mass with parallel joints", J. Geophys. Res. Solid Earth., 115(B3), 1. https://doi.org/10.1029/2008JB006241.   DOI
37 Nourani, M.H., Moghadder, M.T. and Safari, M. (2017), "Classification and assessment of rock mass parameters in Choghart iron mine using P-wave velocity", J. Rock Mech. Geotech. Eng., 9(2), 318-328. https://doi.org/10.1016/j.jrmge.2016.11.006.   DOI
38 Robertsson, J.O., Blanch, J.O. and Symes, W.W. (1994), "Viscoelastic finite-difference modeling", Geophysics., 59(9), 1444-1456. https://doi.org/10.1190/1.1443701.   DOI
39 Sjogren, B., Ofsthus, A. and Sandberg, J. (1979), "Seismic classification of rock mass qualities", Geophys. Prospect., 27(2), 409-442. https://doi.org/10.1111/j.1365-2478.1979.tb00977.x.   DOI
40 Zhao, X., Zhao, J., Cai, J. and Hefny, A.M. (2008), "UDEC modelling on wave propagation across fractured rock masses", Comput. Geotech., 35(1), 97-104. https://doi.org/10.1016/j.compgeo.2007.01.001.   DOI
41 Kim, J.W., Chong, S.H. and Cho, G.C. (2018), "Experimental characterization of stress-and strain-dependent stiffness in grouted rock masses", Mater., 11(4), 524. https://doi.org/10.3390/ma11040524.   DOI
42 Zhu, J., Deng, X., Zhao, X. and Zhao, J. (2013), "A numerical study on wave transmission across multiple intersecting joint sets in rock masses with UDEC", Rock. Mech. Rock. Eng., 46(6), 1429-1442. https://doi.org/10.1007/s00603-012-0352-9.   DOI
43 Zhou, J. and Yang, X.A. (2021), "Deformation behavior analysis of tunnels opened in various rock mass grades conditions in China", Geomech. Eng., 26(2), 191-204. https://doi.org/10.12989/gae.2021.26.2.191.   DOI
44 Agliardi, F., Sapigni, M. and Crosta, G.B. (2016), "Rock mass characterization by high-resolution sonic and GSI borehole logging", Rock Mech. Rock Eng., 49(11), 4303-4318. https://doi.org/10.1007/s00603-016-1025-x.   DOI
45 Bandis, S.C., Lumsden, A.C. and Barton, N.R. (1983), "Fundamentals of rock joint deformation", Int. J. Rock Mech. Min. Sci., 20(6), 249-268. https://doi.org/10.1016/0148-9062(83)90595-8.   DOI
46 Barton, N. (1987), Predicting the Behaviour of Underground Openings in Rocks, Manuel Rocha Memorial Lecture, Lisbon, NGI Publication.
47 Barton, N. (2002), "Some new Q-value correlations to assist in site characterisation and tunnel design", Int. J. Rock. Mech. Min. Sci., 39(2), 185-216. https://doi.org/10.1016/S1365-1609(02)00011-4.   DOI
48 Barton, N. (2006), Rock Quality, Seismic Velocity, Attenuation and Anisotropy, CRC Press.
49 Kianpour, M., Aghda, S.M.F. and Talkhablou, M. (2020), "Classification of limestone rock masses using laboratory and field P-wave velocity by ArcGIS fuzzy overlay (AFO) (case study: five dam sites in Zagros Mountains, Western Iran)", Geotech. Geol. Eng., 38(1), 631-650. https://doi.org/10.1007/s10706-019-01052-3.   DOI
50 Kim, J.W., Chong, S.H. and Cho, G.C. (2021), "Effects of gouge fill on elastic wave propagation in equivalent continuum jointed rock mass", Mater., 14(12), 3173. https://doi.org/10.3390/ma14123173.   DOI
51 Kolsky, H. (1963), Stress Waves in Solids, Vol. 1098, Courier Corporation, Chelmsford, MA, USA.
52 Leucci, G. and De Giorgi, L. (2006), "Experimental studies on the effects of fracture on the P and S wave velocity propagation in sedimentary rock ("Calcarenite del Salento")", Eng. Geol., 84(3-4), 130-142. https://doi.org/10.1016/j.enggeo.2005.12.004.   DOI