• Title/Summary/Keyword: wave propagation velocity

Search Result 412, Processing Time 0.022 seconds

Shear wave in a fiber-reinforced anisotropic layer overlying a pre-stressed porous half space with self-weight

  • Kakar, Rajneesh;Kakar, Shikha
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.911-930
    • /
    • 2016
  • The main purpose of this paper is to study the effects of initial stress, gravity, anisotropy and porosity on the propagation of shear wave (SH-waves) in a fiber-reinforced layer placed over a porous media. The frequency equations in a closed form have been derived for SH-waves by applying suitable boundary conditions. The frequency equations have been expanded and approximated up to $2^{nd}$ order of Whittaker's function. It has been observed that the SH-wave velocity decreases as width of fiber-reinforced layer increases. However, with the increase of initial stress, gravity parameter and porosity, the phase velocity increases. The results obtained are in perfect agreement with the standard results investigated by other relevant researchers.

Rayleigh waves in orthotropic magneto-thermoelastic media under three GN-theories

  • Parveen Lata;Himanshi
    • Advances in materials Research
    • /
    • v.12 no.3
    • /
    • pp.211-226
    • /
    • 2023
  • The present work is considered to study the two-dimensional problem in an orthotropic magneto-thermoelastic media and examined the effect of thermal phase-lags and GN-theories on Rayleigh waves in the light of fractional order theory with combined effect of rotation and hall current. The boundary conditions are used to derive the secular equations of Rayleigh waves. The wave properties such as phase velocity, attenuation coefficient are computed numerically. The numerical simulated results are presented graphically to show the effect of phase-lags and GN-theories on the Rayleigh wave phase velocity, attenuation coefficient, stress components and temperature change. Some particular cases are also discussed in the present investigation.

The Wave Propagation in transversely isotropic composite laminates (가로 등방성 복합재료의 파동전파에 관한 연구)

  • Kim Hyung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.422-425
    • /
    • 2005
  • In an transversely isotropic composite laminates, the velocities, the particle directions and the amplitudes of reflected and transmitted waves were obtained using the equation of motion, the constitutive equation, and the displacement equation expressed by wave number and frequency Eigenvalue problem involving a velocity was solved by Snell's law. Finally, the results were confirmed by T300 Carbon fiber/5208 Epoxy materials. This approach could be applied to the detection of flaws in a transversely isotropic composite laminates by the water immersion C-scan procedure.

  • PDF

Numerical Studies for Application of the SASW Method in an Inclined Soil Layer (경사지반에서 SASW기법 적용시 수치해석을 이용한 영향요소 연구)

  • 김동수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.108-119
    • /
    • 2001
  • The Spectral Analysis of surface Waves(SASW) Method has a great has a great potential for rapid determination of shear wave velocity profile of ground. However, it has an inherent limitation in the interpretation of test results due to the assumption that the ground is layered horizontally. The reason of the assumption is that difficulties exist in obtaining analytical solutions of wave equation when a soil system is composed of inclined soil layer. In this study, a finite-element method has been employed to assess the effects of dip angle and stiffness contrast of inclined soil layers and the testing direction on the dispersion curve. The propagation of wave front in the inclined soil layer was also investigated. The results indicated that the influence of dip angle on the dispersion curve is getting obvious as the dip angle increases and the propagation of wave front in the inclined layer also entirely different compared with the case of the horizontal layer.

  • PDF

The Wave Propagation in Transversely Isotropic Composite Laminates (가로 등방성 복합재료의 초음파에 관한 연구)

  • Kim Hyung-Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.62-69
    • /
    • 2006
  • In transversely isotropic composite laminates, the velocities, the particle directions and the amplitudes of reflected and transmitted waves were obtained using the equation of motion, the constitutive equation, and the displacement equation expressed by wave number and frequency. Eigenvalue problem involving a velocity was solved by Snell's law. Finally, the results were confirmed by 7300 Carbon fiber/5208 Epoxy materials. This approach could be applied to the detection of flaws in transversely isotropic composite laminates by the water immersion C-scan procedure.

Characteristics of Surface and Internal Wave Propagation through Density Stratification (밀도성층을 통과하는 수면파 및 내부파의 전파특성)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.819-830
    • /
    • 2016
  • Hydrodynamic characteristics of wave propagation through density stratification have not been identified in details. So this study conducted a numerical simulation using LES-WASS-3D ver. 2.0 for analysis of density current due to water temperature and salinity in order to analyze hydraulic characteristics under wave action in a two-layer density stratified fluid. For the validity and effectiveness of numerical wave tank used, it was compared and analyzed with the experiment to show waveform based on $3^{rd}$-order Stoke wave theory at the internal of a density stratification. Using the results obtained from numerical simulation, the surface and internal wave heights are reduced as the wave propagates in a two-layer density stratified water. And the surface or internal wave attenuation became more serious as the vorticities were increased by the velocity difference of wave propagation due to the upper-lower density difference around the interface of a density stratification. As well, the surface and internal wave attenuations became more serious with higher density difference and depth ratio between upper and lower layers when the wave propagates through a density stratification.

Velocity Change of Magneto Surface Acoustic Wave (MSAW) in $({Fe_{1-x}}{Co_x})_{89}{Zr_{11}}$ Amorphous Films (I) ($({Fe_{1-x}}{Co_x})_{89}{Zr_{11}}$비정질 자성 막에서의 자기표면탄성파 속도변화 (I))

  • Kim, Sang-Won
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.477-482
    • /
    • 2001
  • The velocity changes of magneto surface acoustic wave (MSAW) have been investigated in the MSAW devices composed of wedge type transducer and as-sputtered ($Fe_{1-x}$ $Co_{x}$ )$_{89}$ $Zr_{ 11}$ (x=0~1.0)amorphous films on glass substrates. The velocity changes of devices depended sensistively on exciting frequency of MSAW, applying the DC bias magnetic field. film thickness and film composition. Particularly. it was conformed that velocity changes increased with the increase of the exciting frequency of MSAW and the thickness of magnetic films. A device deposited x= 0.8 film along the MSAW propagation direction among the devices exhibited a large velocity change of 0.062% at 8.7 MHz for the applied field of 70 Oe.

  • PDF

The influence of the fluid flow velocity and direction on the wave dispersion in the initially inhomogeneously stressed hollow cylinder containing this fluid

  • Surkay D. Akbarov;Jamila N. Imamaliyeva;Reyhan S. Akbarli
    • Coupled systems mechanics
    • /
    • v.13 no.3
    • /
    • pp.247-275
    • /
    • 2024
  • The paper studies the influence of the fluid flow velocity and flow direction in the initial state on the dispersion of the axisymmetric waves propagating in the inhomogeneously pre-stressed hollow cylinder containing this fluid. The corresponding eigenvalue problem is formulated within the scope of the three-dimensional linearized theory of elastic waves in bodies with initial stresses, and with linearized Euler equations for the inviscid compressible fluid. The discrete-analytical solution method is employed, and analytical expressions of the sought values are derived from the solution to the corresponding field equations by employing the discrete-analytical method. The dispersion equation is obtained using these expressions and boundary and related compatibility conditions. Numerical results related to the action of the fluid flow velocity and flow direction on the influence of the inhomogeneous initial stresses on the dispersion curves in the zeroth and first modes are presented and discussed. As a result of the analyses of the numerical results, it is established how the fluid flow velocity and flow direction act on the magnitude of the influence of the initial inhomogeneous stresses on the wave propagation velocity in the cylinder containing the fluid.

A novel four variable refined plate theory for wave propagation in functionally graded material plates

  • Fourn, Hocine;Atmane, Hassen Ait;Bourada, Mohamed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.109-122
    • /
    • 2018
  • In This work an analysis of the propagation of waves of functionally graduated plates is presented by using a high order hyperbolic (HSDT) shear deformation theory. This theory has only four variables, which is less than the theory of first order shear deformation (FSDT). Therefore, a shear correction coefficient is not required. Unlike other conventional shear deformation theories, the present work includes a new field of displacement which introduces indeterminate integral variables. The properties of materials are supposed classified in the direction of the thickness according to two simple distributions of a power law in terms of volume fractions of constituents. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle. The analytical dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the efficacy of the model.

Torsional waves in fluid saturated porous layer clamped between two anisotropic media

  • Gupta, Shishir;Kundu, Santimoy;Pati, Prasenjit;Ahmed, Mostaid
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.645-657
    • /
    • 2018
  • The paper aims to analyze the behaviour of torsional type surface waves propagating through fluid saturated inhomogeneous porous media clamped between two inhomogeneous anisotropic media. We considered three types of inhomogeneities in upper anisotropic layer which varies exponentially, quadratically and hyperbolically with depth. The anisotropic half space inhomogeneity varies linearly with depth and intermediate layer is taken as inhomogeneous fluid saturated porous media with sinusoidal variation. Following Biot, the dispersion equation has been derived in a closed form which contains Whittaker's function and its derivative, for approximate result that have been expanded asymptotically up to second term. Possible particular cases have been established which are in perfect agreement with standard results and observe that when one of the upper layer vanishes and other layer is homogeneous isotropic over a homogeneous half space, the velocity of torsional type surface waves coincides with that of classical Love type wave. Comparative study has been made to identify the effects of various dimensionless parameters viz. inhomogeneity parameters, anisotropy parameters, porosity parameter, and initial stress parameters on the torsional wave propagation by means of graphs using MATLAB. The study has its own relevance in connection with the propagation of seismic waves in the earth where fluid saturated poroelastic layer is present.