• 제목/요약/키워드: wave finite element method

검색결과 562건 처리시간 0.029초

유한요소해석 프로그램에 의한 리니어 초음파 모터의 변위량 해석 (Analysis of Linear-type Ultrasonic Motor Using A Finite Element Method)

  • 이동준;임태빈;강성택;김영욱;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.33-36
    • /
    • 1998
  • This paper is a study on a linear ultrasonic motor with a first longitudinal$(L_1)$ and fourth bending $(B_4)$ double-mode rectangular plate. The stator vibrator is composed of an elastic material plate and of a piezo-ceramic element having a motion by electrical excitation. Each strain vector differs by $90^{\circ}$ generate travelling wave with the elliptical displacement motion of a point on the surface. To magnify displacement of longitudinal direction in elliptical displacement motion, the motor has a mechanism of the.displacement enlargement. In this paper, the vibration shape of the stator is simulated using the finite element method. A detailed model considered of the piezoelectric effect and of the exact geometry of the stator is used to calculate the displacement. The position of displacement mechanism is decided by the maximum displacement.

  • PDF

Multi-scale finite element analysis of acoustic waves using global residual-free meshfree enrichments

  • Wu, C.T.;Hu, Wei
    • Interaction and multiscale mechanics
    • /
    • 제6권2호
    • /
    • pp.83-105
    • /
    • 2013
  • In this paper, a multi-scale meshfree-enriched finite element formulation is presented for the analysis of acoustic wave propagation problem. The scale splitting in this formulation is based on the Variational Multi-scale (VMS) method. While the standard finite element polynomials are used to represent the coarse scales, the approximation of fine-scale solution is defined globally using the meshfree enrichments generated from the Generalized Meshfree (GMF) approximation. The resultant fine-scale approximations satisfy the homogenous Dirichlet boundary conditions and behave as the "global residual-free" bubbles for the enrichments in the oscillatory type of Helmholtz solutions. Numerical examples in one dimension and two dimensional cases are analyzed to demonstrate the accuracy of the present formulation and comparison is made to the analytical and two finite element solutions.

Elastodynamic infinite elements based on modified Bessel shape functions, applicable in the finite element method

  • Kazakov, K.S.
    • Structural Engineering and Mechanics
    • /
    • 제42권3호
    • /
    • pp.353-362
    • /
    • 2012
  • In this paper decay and mapped elastodynamic infinite elements, based on modified Bessel shape functions and appropriate for Soil-Structure Interaction problems are described and discussed. These elements can be treated as a new form of the recently proposed Elastodynamic Infinite Elements with United Shape Functions (EIEUSF) infinite elements. The formulation of 2D horizontal type infinite elements (HIE) is demonstrated, but by similar techniques 2D vertical (VIE) and 2D corner (CIE) infinite elements can also be formulated. It is demonstrated that the application of the elastodynamical infinite elements is the easier and appropriate way to achieve an adequate simulation including basic aspects of Soil-Structure Interaction. Continuity along the artificial boundary (the line between finite and infinite elements) is discussed as well and the application of the proposed elastodynamical infinite elements in the Finite Element Method is explained in brief. Finally, a numerical example shows the computational efficiency of the proposed infinite elements.

Transient linear elastodynamic analysis in time domain based on the integro-differential equations

  • Sim, Woo-Jin;Lee, Sung-Hee
    • Structural Engineering and Mechanics
    • /
    • 제14권1호
    • /
    • pp.71-84
    • /
    • 2002
  • A finite element formulation for the time-domain analysis of linear transient elastodynamic problems is presented based on the weak form obtained by applying the Galerkin's method to the integro-differential equations which contain the initial conditions implicitly and does not include the inertia terms. The weak form is extended temporally under the assumptions of the constant and linear time variations of field variables, since the time-stepping algorithms such as the Newmark method and the Wilson ${\theta}$-method are not necessary, obtaining two kinds of implicit finite element equations which are tested for numerical accuracy and convergency. Three classical examples having finite and infinite domains are solved and numerical results are compared with the other analytical and numerical solutions to show the versatility and accuracy of the presented formulation.

유한요소법에 의한 3차원 충격파 해석

  • 진성훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.773-777
    • /
    • 1995
  • This thesis attempt to explore the shape of stress wave propagation of 3-dimensional stress field which is made in the process of time increment. A finite element code about 3-dimensional stress wave propagation is developed for investigating the changing shape of the fracture by the impact load. The Finite Element Code, which is the solution for the 3-dimensional stress wave analysis, based on Galerkins and Newmark- .betha. method at time increment step. The tensile stress and compressive stress become larger with the order of the middle, the upper and the opposite layers when the impact load is applied. In a while the shear stress become larger according to the order of the upper, the middle and the opposite layers when impact load applied.

  • PDF

속도-응력 변분식을 이용한 3차원 SEM 탄성파 수치 모사에 대한 ADE-PML경계조건의 적용 (Application of ADE-PML Boundary Condition to SEM using Variational Formulation of Velocity-Stress 3D Wave Equation)

  • 조창수;손민경
    • 지구물리와물리탐사
    • /
    • 제15권2호
    • /
    • pp.57-65
    • /
    • 2012
  • 탄성파 수치 모형 계산에 있어서 다양한 방법들이 개발되어 적용되었다. 최근에는 특히 탄성파 수치 모형 계산에 있어 혁신적인 방법인 SEM (Spectral Element Method)가 개발되어 사용되어 왔다. 이 방법은 지형을 자유롭게 표현하는데 있어 유연한 유한요소법의 장점에 정확성을 높인 방법이다. 일반적으로 Weak Formulation 형태의 파동방정식에 육면체 요소와 Gauss-Lobatto-Legendre 적분법을 적용한 방법이 널리 사용된다. 일반적인 SEM에서는 PML (Perfectly Matched Layer)경계조건을 적용하기 어려워 속도-응력 변분식으로 파동방정식을 변경하였다. CFS-PML (Complex frequency Shifted PML)경계조건을 ADE (Auxiliary Differential Equation)방정식으로 변경하여 속도-응력 파동방정식에 적용함으로써 분리할 필요가 없는 PML을 적용한 SEM 수치 모형 계산 알고리듬을 구현하였다. 1차원 수치모형과 3차원 수치모형 실험을 통하여 SEM에 적용한 비분리 CFS-PML이 유한경계에서 인공적으로 반사되는 반사파를 효과적으로 제거하는 것을 확인하였다.

수동감쇠 적층보의 진동해석을 위한 스펙트럴요소법의 적용 (Application of Spectral Element Method for the Vibration Analysis of Passive Constrained Layer Damping Beams)

  • 송지훈;홍석윤
    • 한국음향학회지
    • /
    • 제28권1호
    • /
    • pp.25-31
    • /
    • 2009
  • 본 논문에서는 수동감쇠 적층보에 대한 스펙트럴요소법을 유도하였다. 수동감쇠 적층보의 중심층인 점탄성층은 주파수에 따라 값이 변하는 복소 계수를 가지고 있다. 그래서 점탄성층의 주파수 종속적인 복소 계수를 계산하기 위하여, 스펙트럴요소법을 주파수축 상에서 파동해로부터 얻은 엄밀해를 기반으로 하는 동적형상함수를 사용하여 유도하였다. 유도된 수동감쇠 적층보에 대한 스펙트럴요소의 신뢰성과 정밀도를 검증하기 위하여 스펙트럴요소법과 유한요소법을 사용하여 구한 주파수응답함수와 동적응답을 비교하였다. 비교 결과 수동감쇠 적층보에 대한 스펙트럴요소가 유한요소에 비해서 보다 신뢰성 있는 결과를 제공하는 것을 알 수 있었다.

웨이브 와셔 스프링의 비선형성에 관한 연구 (A Study on the non -linearity of wave washer spring)

  • 이수종;왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권3호
    • /
    • pp.246-255
    • /
    • 1997
  • The wave washer springs are expected to behave non-linearly between forces and displace¬ments due to contractions of the height and due to expansions in radial direction. To find out the non -linearity of wave washer springs, the three dimensional plate analysis theory using the finite element method is adopted in this paper. The wave washer springs are considered to be three dimensional plate structures rather than frame structures, because their thickness is normally much smaller than their width. The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displacements are added to X - Y Z coordinates of nodal points. The new stiffness matrix of the system using the new coordinates of nodal points is adopted to calculate the another nodal displacements, that is, the step by step method is used in this paper. The relations between the increments of forces and displacements in each step are recorded and plotted in chart. The experimental results are compared with the calculated chart and it is shown that there are good coincidences between measured values and calculated ones.

  • PDF

3차원 자유표면파 문제에서의 국소유한요소법의 응용 (An Application of the Localized Finite Element Method to 3-dimensional Free Surface Wave Problems)

  • 배광준;김세은
    • 대한조선학회지
    • /
    • 제24권3호
    • /
    • pp.1-8
    • /
    • 1987
  • In this paper, the localized finite element method(LFEM) is applied to 3-dimensional ship motion problems in water of infinite depth. The LFEM used here is based on the functional constructed by Bai & Yeung(1974). To test the present numerical scheme, a few vertical axisymmetric bodies are treated by general 3-dimensional formulation. The computed results of hydrodynamic coefficients for a few vertical spheroids and vertical circular cylinders show good agreement with results obtained by others. The advantages of the present numerical method compared with the method of integral equation are as follows; (i) The cumbersome existence of irregular frequencies in the method of conventional integral equation is removed. (ii) The final matrix is banded and symmetric and the computation of the matrix elements is comparatively easier, whereas the size of the matrix in the present scheme is much larger. (iii) In the future research, it is possible to accommodate with the nonlinear exact free surface boundary condition in the localized finite element subdomain, whereas the linear solution is assumed in the truncated(far field) subdomain.

  • PDF

Dynamic Response of Container Ship Subjected to Bow flare Slamming Loads

  • Choi, Tae-Soon;Islam, MD Shafiqul;Seo, Dae-Won;Kim, Joon-Gyu;Song, Kang-hyun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권4호
    • /
    • pp.195-203
    • /
    • 2018
  • The wave impact on ships could cause local damage to the ship's hull, which has been a concerning issue during the ship design process. In recent years, local structural damages of ships caused by slamming loads have been reported by accident; therefore, it is necessary to study the local slamming pressure loads and structural response assessment. In the present study, slamming loads around the ship's bow region in the presence of regular wave have been simulated by RANS equations discretized with a cell-centered finite volume method (FVM) in conjunction with the $k-{\Box}$ turbulence model. The dynamic structural response has been calculated using an explicit FE method. By adding the slamming pressure load of each time step to the finite element model, establishing the reasonable boundary conditions, and considering the material strain-rate effects, the dynamic response prediction of the bow flare structure has been achieved. The results and insights of this study will be helpful to design a container ship that is resistant enough to withstand bow flare slamming loads.