• Title/Summary/Keyword: watermelon

Search Result 431, Processing Time 0.028 seconds

Two Pathogenic Groups in Acidovorax valerianellae Causing Bacterial Black Spot on the Various Crop Plants (다양한 작물에서 세균검은점무늬병을 일으키는 Acidovorax valerianellae의 병원성이 다른 2그룹)

  • Kim, Hye-Seong;Kim, Young-Tak;Park, Kyoung-Soo;Lee, Ji-Hye;Lee, Hyok-In;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.23 no.4
    • /
    • pp.314-321
    • /
    • 2017
  • Acidovorax valerianellae had been reported a causal agent of bacterial black spot disease on corn salad in France, 2003 and on watermelon in Korea 2011. In this study, difference in host specificity between 2 groups, corn salad strains and watermelon strains, of Acidovorax valerianellae was recognized and compared. In the pathogenicity test, all 5 watermelon strains showed pathogenicity on the 6 Cucurbitaceae plants but not on corn salad, whereas 4 corn salad strains showed pathogenicity only on the corn salad. Utilization of Biolog substrates was different between watermelon strains and corn salad strains on 4 substrates, Malonic Acid, ${\alpha}-Hydroxybutyric$ Acid, ${\alpha}-Keto$ Butyric Acid, and Glycyl-L Glutamic Acid. The phylogenetic tree built with the 16S rDNA sequences showed that all of A. valerianellae stains was grouped into 1 clade separating from the other species of Acidovorax genus. Within A. valerianellae clade, watermelon strains and corn salad strains were separated into 2 sub-groups. REP-PCR analysis also separated the two groups. Host specificity, substrate utilization, and some genetic characteristics suggested that there are two pathogenic groups, watermelon group and corn salad group in A. valerianellae.

Establishment of Critical Ranges of Inorganic Nutrition Contents in Leaves of Watermelon(Cucurbita citrullus L.) in Protected Cultivation (시설재배 수박 엽 적정양분함량 설정)

  • Lee, Ju-Young;Park, Jae-Hong;Jang, Byoung-Choon;Lee, Ki-Sang;Hyun, Byung-Keun;Hwang, Seon-Woong;Yoon, Young-Sang;Song, Beom-Heon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.3
    • /
    • pp.158-163
    • /
    • 2008
  • This study was carried out to elucidate the relationship between yields and inorganic nutrient contents, and then establish of critical range of inorganic nutrient contents in leaves of watermelon in protected cultivation in Gochang from 2004 to 2006. In considering the yields and nutrient contents of watermelon, the critical ranges of macro-nutrient contents in leaves of watermelon at 20 days after transplanting were in N 5.0~6.6%, P 0.30~0.57%, K 3.5~4.2%, Ca 1.7~3.8% and Mg 0.20~0.42%, respectively. The critical ranges of micronutrient content, such as Fe, Mn, Zn, Cu and B, were not found the regular trend with different growth stages. However, the critical range of micronutrient contents in leaves of watermelon at 20 day after transplanting were in Fe 96~128, Mn 67~201, Zn 40~60, Cu 6~9 및 B $41{\sim}82mg\;kg^{-1}$, respectively. Finally, these results might be used at the indicator for critical nutrient contents for diagnosis of nutritional disorder in watermelon in protected cultivation.

Residue Patterns and Biological Half-lives of Pyridalyl and Fluopicolide in Watermelon (수박 중 및 Pyridalyl 및 Fluopicolide의 잔류 특성 및 생물학적 반감기 산출)

  • Park, Ji-Su;Yang, Seung-Hyun;Choi, Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.1
    • /
    • pp.50-56
    • /
    • 2017
  • BACKGROUND: The present study was carried out to identify the residue patterns of insecticide pyridalyl and fungicide fluopicolide in watermelon and calculate the biological half-lives for establishing the pre-harvest residue limits (PHRLs). METHODSANDRESULTS:The watermelon samples for residue analysis were harvested 7 times during 0~10 days (Field 1) and 0~20 days (Field 2) after treatment of pesticides on watermelon in two different fields at the recommended dose, respectively. The residue analysis was conducted with HPLC/UVD. The method limit of quantitation (MLOQ) were set at 0.05 and 0.02 mg/kg, respectively, and overall mean recoveries were 81.2~90.5% for pyridalyl and fluopicolide. The residues in sample were stable for 43~47 days. The initial residue amount in field 1 and 2 were 0.12~0.16 mg/kg for pyridalyl and 0.23~0.24 mg/kg for fluopicolide, which were below maximum residue limit (MRL). The biological half-lives in field 1 and 2 were 26.9 and 17.9 days for pyridalyl and 16.6 and 94.2 days for fluopicolide, respectively. CONCLUSION: The PHRL for watermelon were estimated as 0.21 and 1.03 mg/kg for pyridalyl and flopicolide at 10 days before harvesting. The residue patterns of pyridalyl and fluopicolide were characterized by a very slow decrease of residue levels in watermelon.

Application Effect of Organic Fertilizer and Chemical Fertilizer on the Watermelon Growth and Soil Chemical Properties in Greenhouse (유기질비료와 화학비료의 시용수준에 따른 시설수박 생육과 토양화학성의 변화)

  • Uhm, Mi-Jeong;Noh, Jae-Jong;Chon, Hyong-Gwon;Kwon, Sung-Whan;Song, Young-Ju
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • BACKGROUND: Organic fertilizers in watermelon cultivation are widely used to supply nutrient and organic matter. This study was conducted to investigate the effects of application rate of organic fertilizer on the watermelon growth and soil chemical properties in greenhouse METHODS AND RESULTS: The organic fertilizers used in this experiment were mixed expeller cake (MEC) and mixed organic fertilizer (MOF). The treatments were conducted with 4 levels (1.0 N, 0.7 N, 0.5 N and 0.3 N) on the basis of soil testing nitrogen fertilization (STNF) using MEC or MOF as the basal dressing, and using chemical fertilizers (CF) as the additional dressing on the rest of STNF. These fertilizations were compared to CF 1.0 N (0.3 N as the basal and 0.7 N as the additional dressing) and non fertilization (NF). The leaf area of watermelon in treatment 0.5 N and 0.3 N using MEC or MOF was similar to CF treatment. The absorbed nutrient amounts by leaf, weight and sugar contents of fruit in the 0.5 N and 0.3 N treatments were higher than other treatments. In 0.5 N and 0.3 N treatments using MEC or MOF on the basis of STNF, soil chemical properties such as electrical conductivity (EC), available $P_2O_5$ and exchangeable K concentrations after experiment showed tendency to decreasing or similar level before experiment. CONCLUSION(s): These results suggest that the MEC or MOF application as the basal dressing at the 30~50% level of STNF and CF application as the additional dressing on the rest of STNF be best to maintain adequate nutrient of soil and to increase marketable yield for watermelon.

Lycopene Content and Fruit Morphology of Red, Pink, Orange, and Yellow Fleshed Watermelon (Citrullus lanatus) Germplasm Collections

  • Noh, Jae-Jong;Hur, On-Sook;Ro, Na-Young;Lee, Jae-Eun;Hwang, Ae-Jin;Kim, Bit-Sam;Rhee, Ju-hee;Yi, Jung Yoon;Kim, Ji Hyun;Lee, Ho-Sun;Sung, Jung-Sook;Kim, Myung-Kon;Assefa, Awraris Derbie
    • Korean Journal of Plant Resources
    • /
    • v.33 no.6
    • /
    • pp.624-637
    • /
    • 2020
  • High-quality and high-phytonutrient watermelon fruits have strong market opportunities besides their health related benefits. Hence, investigating quality and nutritional related traits of watermelon genetic resources could provide important baseline data in breeding for increased lycopene content thereby increasing the marketability of watermelon. To this end, we have examined some fruit morphological traits and lycopene content of 105 genetic resources. Seeds, originally obtained from 22+ countries, were obtained from the National Agrobiodiversity Center, Jeonju, South Korea, grown in an experimental field and harvested at a fully mature stage. The size of pistil scar (SPS), the width of stripes (WS), weight of fruit (WF), length of fruit (LF), width of fruit (WIF), the thickness of pericarp (TP), soluble solids content (SSC), fruit shape in longitudinal section, ground color of skin, the intensity of the green color of skin, fruit shape at the apical part, grooving distribution, conspicuousness of stripes, and main color of the flesh were recorded on the field and inside laboratory and the lycopene was measured using spectrophotometric and HPLC methods. Watermelon fruits have shown a diverse morphological characters. Red and pink fleshed fruits dominated in the entire collections. Fruits with higher thickness of rind were found to exhibit less soluble solid content (SSC). Korean origin fruits were characterized by intermediate SSC while the United States of America (USA), Russia (RUS), Tajikistan (TJK), Turkmenistan (TKM), Taiwan (TWN), and Uruguay (URY) originated fruits had the highest SSC. The lycopene content varied between 41.37 and 182.82 ㎍/g, 2.81 and 163.72 ㎍/g, and 3.54 and 255.47 ㎍/g using HPLC, UV-Vis spectrophotometer, and microplate reader spectrophotometer, respectively. Red- and pink-fleshed fruits had the highest levels of lycopene content compared to the yellow- and orange-fleshed. Lycopene content had a significant positive correlation with SSC, however, no correlations were detected between lycopene and other quantitative fruit morphological characters. Our study demonstrated high diversity exists in fruit morphological traits and lycopene content of the germplasm collections which provide beneficial baseline data for a future breeding program and utilization of watermelon germplasm collections in gene banks for the maintenance and improvement of the current levels of production, marketability, and health-related benefit of watermelon fruits.

Distribution of Free Sugars in the Various Portions of Watermelon (Citrullus vuigaris L.) and Muskmelon (Cucumis meio var. reticulatus Naud.) (수박과 멜론의 부위별 유리당 함량 분포에 관한 연구)

  • Sohn, Joo-Yong;Ban, Sung-Chul;Hong, Sung-Hoi;Shin, Jeong-Sheop
    • Applied Biological Chemistry
    • /
    • v.39 no.3
    • /
    • pp.200-205
    • /
    • 1996
  • This experiment was conducted to characterize and quantify the free sugars (glucose, fructose, sucrose, maltose) contained in many different portions of watermelon (Citrus vulgaris L.) and muskmelon (Cucumis melo var. reticulatus Naud.) fruits by High Performance Liquid Chromatography (HPLC). Free sugars were mainly fructose, glucose, sucrose, and their contents were variable among portions. Total free sugar contents were higher in the stylar end and side than in the stem end of both watermelon and muskmelon. Total free sugar contents increased from the periphery toward the central core in watermelon and except central core content seeds in muskmelon Ratio of nonreducing to reducing sugars [(fructose + glucose)/sucrose] was gradually decreased from the periphery toward the middle area in watermelon, though the central core showed higher value than the middle area. For the edible portion of muskmelon, the ratio was decreased toward middle area, and no significant difference was observed between the central core and the middle area. However, reducing sugars and nonreducing sugar were all increased from the periphery toward the central core in watermelon. In contrast with watermelon, reducing sugars were decreased in muskmelon.

  • PDF

Comparison of the pollination activities among honeybee, Apis mellifera, and bumblebees, Bombus ignitus and B. terrestris in the watermelon houses on summer season (꿀벌과 호박벌 그리고 서양뒤영벌의 여름철 시설수박 화분매개활동 비교)

  • Lee, Sang Beom;Choi, Young Cheol;Park, Kwan Ho;Ha, Nam Gyu;Hwang, Seok Jo;Kim, Seung-Ryul
    • Journal of Sericultural and Entomological Science
    • /
    • v.50 no.2
    • /
    • pp.41-47
    • /
    • 2012
  • This study was examined the characteristics on the pollinating activities of Apis mellifera, Bombus ignitus and B. terrestris as pollinators on the watermelon flowers(Citrullus vulgaris Schrad), and the effects of the pollination by pollinators compared to the artificial pollination in the watermelon green houses in Nonsan City on summer season in 2005. As a result, B. ignitus and B. terrestris could not be used for summer season, because the bumblebees were not pollinated effectively indeed even two days after hives were released at watermelon green houses during the summer cultivating period. It could not be controlled a poor watermelon house conditions; high temperature and low humidity on summer season which were the bad environment for pollinating activities of bumblebees. But this study was showed that A. mellifera could be used comparatively good pollinator instead of artificial pollination in spite of the bad environment for bee within the watermelon green houses on summer season.

Phylogenetic Analysis of Cucurbit Chlorotic Yellows Virus from Melon in 2020 in Chungbuk, Korea (2020년 충북지역 멜론에서 발생한 Cucurbit Chlorotic Yellows Virus의 계통분석)

  • Taemin Jin;Hae-Ryun Kwak;Hong-Soo Choi;Byeongjin Cha;Jong-Woo Han;Mikyeong Kim
    • Research in Plant Disease
    • /
    • v.29 no.1
    • /
    • pp.52-59
    • /
    • 2023
  • Cucurbit chlorotic yellows virus (CCYV) is a plant virus that causes damage to cucurbit crops such as watermelon and cucumber, and is transmitted by an insect vector known as the whitefly. Since CCYV was first detected on cucumber in Chungbuk in 2018, it has been reported in other areas including Gyeongsang in Korea. In 2020, we performed field surveys of yellowing diseases in the greenhouses growing melon and watermelon in Chungbuk (Jincheon and Eumseong). Reverse transcription-polymerase chain reaction analysis of 79 collected samples including melon, watermelon, and weeds resulted in detection of CCYV in 4 samples: Three samples were singly infected with CCYV and one samples was mixed infected with CCYV, Cucurbit aphid borne yellows virus, and Watermelon mosaic virus. The complete genome sequences of the four collected CCYV melon isolates (ES 1-ES 4) were determined and genetically compared with those of previously reported CCYV isolates retrieved from GenBank. Phylogenetic analyses of RNA 1 and 2 sequences revealed that four ES isolates were clustered in one group and closely related to the CCYV isolates from China. The analysis also revealed very low genetic diversity among the CCYV ES isolates. In general, CCYV isolates showed little genetic diversity, regardless of host or geographic origins. CCYV has the potential to pose a serious threat to melon, watermelon, and cucumber production in Korea. Further studies are needed to examine the pathogenicity and transmissibility of CCYV in weeds and other cucurbits including watermelon.

Incidence of Virus Diseases in Major Cultivated Areas of Watermelon and Melon in Chungbuk Province (충북지역 주산지 수박, 멜론에서의 바이러스 발생현황)

  • Jong-Woo Han;Young-Uk Park;Cheol-Ku Youn;Seok-Ho Lee;Taek-Goo Jeong;Hong-Soo Choi;Mi-Kyeong Kim
    • Research in Plant Disease
    • /
    • v.29 no.1
    • /
    • pp.88-93
    • /
    • 2023
  • To investigate the incidence status of viruses in major cultivated areas of watermelon and melon in Chungbuk Province, samples were collected from 2020 to 2021 in vinyl greenhouse of Jincheon and Eumseong and examined for virus infection using reverse transcription polymerase chain reaction. Of the six viruses on watermelon that was analyzed in this study, watermelons were infected with cucumber mosaic virus (CMV), watermelon mosaic virus (WMV), cucumber green mottle mosaic virus (CGMMV), and cucurbit aphid-borne yellows virus (CABYV). The incidence rate of CMV was 20.9-35.0%, WMV 0.4-15.8%, CGMMV 1.6-38.5%, and CABYV was 3.5-3.7% from 2020 to 2021. But strangely, there were no incidence of zucchini yellow mosaic virus and cucurbit chlorotic yellows virus (CCYV) during investigation. From this result, we knew the major virus was CGMMV on watermelon in Chungbuk Province. Molecular diagnosis assays of the two melon viruses, showed that melons were infected with CABYV and CCYV from 2020 to 2021. The incidence rate of CABYV was 53.9-92.2% and CCYV was 2.7-20.8%. The incidence of CABYV was high in melon cultivation of Jincheon and Eumseong, Chungbuk. Afterwards, it is necessary to establish a control management strategy for reduce the incidence of CABYV. Furthermore, we must pay attention that of CCYV even if the incidence was low.

Fruit Morphology, Citrulline, and Arginine Levels in Diverse Watermelon (Citrullus lanatus) Germplasm Collections

  • Awraris Derbie Assefa;On-Sook Hur;Na-Young Ro;Jae-Eun Lee;Ae-Jin Hwang;Bit-Sam Kim;Ju-hee Rhee;Jung Yoon Yi;Ji Hyun Kim;Ho-Sun Lee;Jung-Sook Sung;Myung-Kon Kim;Jae-Jong Noh
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.33-33
    • /
    • 2020
  • Watermelon (Citrullus lanatus) is a non-seasonal, economically important, cucurbit cultivated throughout the world with Asia as a continent contributing the most. As part of the effort in diversifying watermelon genetic resources in the already cultivated group, this study was devoted to providing baseline data on morphological quality traits and health-beneficial phytonutrients of watermelon germplasm collections, thereby promoting watermelon research and cultivation programs. To this end, we reported morphological traits, citrulline, and arginine levels of watermelon genetic resources obtained from the gene bank of Agrobiodiversity Center, Republic of Korea, and discussed the relationship between each other. Diverse characteristics were observed among many of the traits. But, most of the genetic resources (>90%) were either red or pink-fleshed. Korean origin fruits contained intermediate levels of soluble solid content (SSC) while The USA, Russian, Tajikistan, Turkmenistan, Taiwan, and Uruguay originated had generally the highest levels of soluble solids. The citrulline and arginine contents using HPLC method were ranged from 6.9 to 52.1 mg/g (average, 27.3 mg/g) and 1.8 to 21.3 mg/g (average, 9.8 mg/g), respectively. The citrulline content determined using Citrulline Assay Kit was ranged from 6.5 to 42.8 mg/g (average, 27.0 mg/g). Resources with high citrulline and arginine levels contained low SSC. Whereas, red- and pink-colored flesh samples had less citrulline compared to yellow and orange. In addition to the profiling of morphological characters and phytonutrients, molecular marker characterization and identification of sources of resistance to diseases and pests are recommended for a more complete diversity analysis of watermelon genetic resources.

  • PDF