Browse > Article
http://dx.doi.org/10.7732/kjpr.2020.33.6.624

Lycopene Content and Fruit Morphology of Red, Pink, Orange, and Yellow Fleshed Watermelon (Citrullus lanatus) Germplasm Collections  

Noh, Jae-Jong (Jeonbuk Agricultural Research and Extension Services)
Hur, On-Sook (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA)
Ro, Na-Young (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA)
Lee, Jae-Eun (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA)
Hwang, Ae-Jin (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA)
Kim, Bit-Sam (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA)
Rhee, Ju-hee (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA)
Yi, Jung Yoon (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA)
Kim, Ji Hyun (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA)
Lee, Ho-Sun (International Technology Cooperation Center, RDA)
Sung, Jung-Sook (Upland Crop Breeding Division, Department of Southern Area Crop Science, National Institute of Crop Science, RDA)
Kim, Myung-Kon (Department of Food Science and Technology, Jeonbuk National University)
Assefa, Awraris Derbie (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA)
Publication Information
Korean Journal of Plant Resources / v.33, no.6, 2020 , pp. 624-637 More about this Journal
Abstract
High-quality and high-phytonutrient watermelon fruits have strong market opportunities besides their health related benefits. Hence, investigating quality and nutritional related traits of watermelon genetic resources could provide important baseline data in breeding for increased lycopene content thereby increasing the marketability of watermelon. To this end, we have examined some fruit morphological traits and lycopene content of 105 genetic resources. Seeds, originally obtained from 22+ countries, were obtained from the National Agrobiodiversity Center, Jeonju, South Korea, grown in an experimental field and harvested at a fully mature stage. The size of pistil scar (SPS), the width of stripes (WS), weight of fruit (WF), length of fruit (LF), width of fruit (WIF), the thickness of pericarp (TP), soluble solids content (SSC), fruit shape in longitudinal section, ground color of skin, the intensity of the green color of skin, fruit shape at the apical part, grooving distribution, conspicuousness of stripes, and main color of the flesh were recorded on the field and inside laboratory and the lycopene was measured using spectrophotometric and HPLC methods. Watermelon fruits have shown a diverse morphological characters. Red and pink fleshed fruits dominated in the entire collections. Fruits with higher thickness of rind were found to exhibit less soluble solid content (SSC). Korean origin fruits were characterized by intermediate SSC while the United States of America (USA), Russia (RUS), Tajikistan (TJK), Turkmenistan (TKM), Taiwan (TWN), and Uruguay (URY) originated fruits had the highest SSC. The lycopene content varied between 41.37 and 182.82 ㎍/g, 2.81 and 163.72 ㎍/g, and 3.54 and 255.47 ㎍/g using HPLC, UV-Vis spectrophotometer, and microplate reader spectrophotometer, respectively. Red- and pink-fleshed fruits had the highest levels of lycopene content compared to the yellow- and orange-fleshed. Lycopene content had a significant positive correlation with SSC, however, no correlations were detected between lycopene and other quantitative fruit morphological characters. Our study demonstrated high diversity exists in fruit morphological traits and lycopene content of the germplasm collections which provide beneficial baseline data for a future breeding program and utilization of watermelon germplasm collections in gene banks for the maintenance and improvement of the current levels of production, marketability, and health-related benefit of watermelon fruits.
Keywords
Genetic resources; HPLC; Principal component analysis; Quality traits; Spectrophotometry;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Saini, R.K., K.R.R. Rengasamy, F.M. Mahomoodally and Y.S. Keum. 2020. Protective effects of lycopene in cancer, cardiovascular, and neurodegenerative diseases: An update on epidemiological and mechanistic perspectives. Pharmacol. Res. 155:104730.   DOI
2 Sandmann, G. 1994. Carotenoid biosynthesis in microorganisms and plants. Eur. J. Biochem. 24:7-24.   DOI
3 Sari, N., I. Solmaz, H. Yetisir and H. Unlu. 2007. Watermelon genetic resources in Turkey and their characteristics. Acta Hortic. 731:433-438.   DOI
4 Shahzad, T., I. Ahmad, S. Choudhry, M.K. Saeed and M.N. Khan. 2014. DPPH free radical scavenging activity of tomato, cherry tomato, and watermelon: Lycopene extraction, purification and quantification. Int. J. Pharm. Sci. 6:223-228.
5 Solmaz, I. and N. Sari. 2009. Characterization of watermelon (Citrullus lanatus) accessions collected from Turkey for morphological traits. Genet. Resour. Crop Evol. 56:173-188.   DOI
6 Soteriou, G.A., M.C. Kyriacou, A.S. Siomos and D. Gerasopoulos. 2014. Evolution of watermelon fruit physicochemical and phytochemical composition during ripening as affected by grafting. Food Chem. 165:282-289.   DOI
7 Stahl, W., U. Heinrich, O. Aust, H. Tronnier and H. Sies. 2006. Lycopene-rich products and dietary photoprotection. Photochem. Photobiol. Sci. 5:238-242.   DOI
8 Stahl, W. and H. Sies. 1997. Antioxidant defense: Vitamins E and C and carotenoids. Diabetes 46:S14-S18.   DOI
9 Son, C.Y., Y.J. Jung, J.H. Kyoung, J.S. Lee and K.K. Kang. 2011. Studies on genetic variation of soluble solids, acidity and carotenoid contents in tomato fruits from germplasm. Korean J. Plant Res. 24:195-199.   DOI
10 Suica-Bunghez, I.R., M.F. Raduly, S.M. Doncea and R. Ion. 2011. Lycopene determination in tomatoes by different spectral techniques (UV-VIS, FTIR and HPLC). Dig. J. Nanomater. Biostructures 6:1349-1356.
11 Liu, W., S. Zhao, Z. Cheng, S.R. King, X. Wan and Z. Yan. 2010. Lycopene and citrulline contents in watermelon (Citrullus lanatus) fruit with different ploidy and changes during fruit development. Acta Hortic. 871:543-547.   DOI
12 Islamian, J.P. and H. Mehrali. 2015. Lycopene as a carotenoid provides radioprotectant and antioxidant effects by quenching radiation-induced free radical singlet oxygen: An overview. Cell J. 16:386-391.
13 Kalaivani, G. 2015. Extraction and determination of lycopene from watermelon by different spectral techniques (UV-VIs, FTIR, and GC-MS) for in vitro antioxidant activity. Asian J. Sci. Technol. 6:956-961.
14 Kumar, C.S.C., R. Mythily and S. Chandraju. 2012. Studies on sugars extracted from water melon (Citrullus lanatus) rind, a remedy for related waste and its management. Int. J. Chem. Anal. Sci. 3:1527-1529.
15 Perkins-Veazie, P., J.K. Collins, S.D. Pair and W. Roberts. 2001. Lycopene content differs among red-fleshed watermelon cultivars. J. Sci. Food. Agric. 81:983-987.   DOI
16 Nagal, S., C. Kaur, H. Choudhary, J. Singh, B.B. Singh and K.N. Singh. 2012. Lycopene content, antioxidant capacity and colour attributes of selected watermelon (Citrullus lanatus (Thunb.) Mansfeld ) cultivars grown in India. Int. J. Food. Sci. Nutr. 63:996-1000.   DOI
17 Park, Y.H. and S.K. Cho. 2012. Watermelon production and breeding in South Korea. Isr. J. Plant. Sci. 60:415-423.
18 Perkins-Veazie, P., A. Davis and J.K. Collins. 2012. Watermelon:From dessert to functional food. Isr. J. Plant. Sci. 60:395-402.
19 Perkins-Veazie, P. and J.K. Collins. 2003. Watermelon: Rich in the antioxidant lycopene. Acta Hortic. 628:663-668.   DOI
20 Pinto, M.P., C.N. dos Santos, C. Henriquesa, G. Lima and F. Quedas. 2001. Lycopene content and antioxidant capacity of Portuguese watermelon fruits. Elec. J. Env. Agricult. Food Chem. 10:2090-2097.
21 Wehner, T.C., R.P. Naegele and P. Perkins-Veazie. 2017. Heritablity and genetic variance components associated with citrulline, arginine, and lycopene conetent in diverse watermelon cultigens. HortScience 52:936-940.   DOI
22 Szamosi, C., I Solmaz, N. Sari and C. Barsony. 2009. Morphological characterization of Hungarian and Turkish watermelon (Citrullus lanatus (Thunb.) Matsum. et Nakai) genetic resources. Genet. Resour. Crop Evol. 56:1091-1105.   DOI
23 Tan, B. and D.N. Soderstrom. 1989. Qualitative aspects of UV-Vis spectrophotometry of β-carotene and lycopene. J. Chem. Educ. 66:258-260.   DOI
24 Wehner, T.C. 2008. Watermelon: In Prohens, J. and F. Nuez (eds.), Vegetables I. Handbook of Plant Breeding Vol 1, Springer, Newyork, NY, USA. pp. 381-418.
25 Di Mascio, P., S. Kaiser and H. Sies. 1989. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 274:532-538.   DOI
26 Yoo, K.S., H. Bang, E.J. Lee, K. Crosby and B.S. Patil. 2012. Variation of carotenoid, sugar, and ascorbic acid concentrations in watermelon genotypes and genetic analysis. Hortic. Environ. Biotechnol. 53:552-560.   DOI
27 Cho, S.M., S.A. Oh, Y.S. Choi and S.B Park. 2014. Effect of plant growth regulators on regeneration from the cotyledon explants in watermelon (Citrullus lanatus (thunb.) Matusm. & Nakai). Korean J. Plant Res. 27:051-059.   DOI
28 Choudhary, R., T.J. Bowser, P. Weckler, N.O. Maness and W. Mcglynn. 2009. Rapid estimation of lycopene concentration in watermelon and tomato puree by fiber optic visible reflectance spectroscopy. Postharvest Biol. Technol. 52:103-109.   DOI
29 Davis, A.R., C.L. Webber III, W. Liu, P. Perkins-Veazie, A. Levi and S. King. 2013. Watermelon quality Ttraits as affected by ploidy. HortScience. 48: 1113-1118.   DOI
30 Davis, A.R., W.W. Fish and P. Perkins-Veazie. 2003. A rapid hexane-free method for analyzing lycopene content in watermelon. J. Food. Sci. 68:328-332.   DOI
31 Fish, W.W., P. Perkins-Veazie and J.K. Collins. 2002. A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. J. Food Compos. Anal. 15:309-317.   DOI
32 Hartman, J.L., T.C. Wehner, G. Ma and P. Perkins-Veazie. 2019. Citrulline and arginine content of taxa of Cucurbitaceae. Horticulturae 5:22.   DOI
33 Huh, Y.C., H.S. Choi, I. Solmaz, N. Sari and S. Kim. 2014. Morphological characterization of Korean and Turkish watermelon germplasm. Korean J. Agric. Sci. 41:309-314.   DOI
34 International Union for the Protection of New Varieties of Plants (UPOV). 2019. Watermelon, TG/142/5. Guidelines for the conduct of tests for distinctness, uniformity and stability. http://www.upov.int/edocs/tgdocs/en/tg142.pdf Accessed on 1 April 2020.