• 제목/요약/키워드: waterborne polyurethane

검색결과 90건 처리시간 0.026초

알카리 금속염으로부터 대전방지용 수분산 폴리우레탄 코팅용액 제조 (Preparation of Waterborne Polyurethane Coating Solutions with Antistatic Property from Alkali Metal Salts)

  • 홍민기;김병석;이용운;송기창
    • Korean Chemical Engineering Research
    • /
    • 제50권3호
    • /
    • pp.427-434
    • /
    • 2012
  • Poly (carbonate diol)과 isophrone diisocyanate 그리고 dimethylol propionic acid로 부터 NCO/OH 몰 비를 0.8, 1.1, 1.3으로 각각 조절하여 수분산 폴리우레탄(waterborne polyurethane dispersion, PUD)을 합성하였다. 이 용액에 알카리 금속염인 $LiClO_4$, $NaClO_4$, $KClO_4$를 첨가하여 대전방지용 수분산 폴리우레탄 코팅 용액을 제조하였다. 이 과정에서 첨가되는 알카리 금속염의 첨가량과 종류가 코팅 도막의 표면저항에 미치는 영향을 살펴보았다. 알카리 금속염의 첨가량이 증가될수록 코팅 도막의 표면저항은 감소하였다. 그러나 PUD에 같은 양의 알카리 금속염이 첨가될 경우에는 $LiClO_4$ > $NaClO_4$ > $KClO_4$의 순서로 코팅 도막의 이온 전도도가 우수함을 알 수 있었다. 또한 PUD 내의 NCO/OH 몰 비가 증가함에 따라 코팅 도막의 표면저항이 증가하여 이온 전도도가 감소하였다.

수분산 폴리우레탄 및 탄소나노섬유 복합체의 물리적 특성 (Study on Physical Properties of Waterborne Polyurethane and Carbon Nanofiber Composites)

  • 임석대;고상철;곽이구
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.24-29
    • /
    • 2021
  • In this study, the electrical and mechanical properties of carbon polymer composites, which have been gradually increasing in use in various fields, were investigated, and environment-friendly carbon nanofiber/waterborne polyurethane composites were prepared. Carbon nanofibers (diameter = approximately 100-300 mm) were synthesized using a relatively simple CVD process, obtaining a carbon material for application in ultrathin planar heating films and EMP shielding films in the future. The carbon nanofiber was dispersed, and mixed with water-dispersible polyurethane using a dispersing aid. According to the carbon nanofiber mass ratio, 20%-60% polyurethane/carbon nanofiber composites were manufactured. At a concentration of approximately 20%, the percolation threshold was determined, and at a concentration of approximately 50%, an electrical conductivity greater than 0.1 S/cm was determined. Moreover, a sample having a concentration of up to 60% was evaluated to further understand the mechanical properties. It was observed that as the concentration of the carbon nanofibers increased, the elongation decreased.

Preparation and Properties of Waterborne Polyurethane-Urea/Poly(vinyl alcohol) Blends for High Water Vapor Permeable Coating Materials

  • Yun, Jong-Kook;Yoo, Hye-Jin;Kim, Han-Do
    • Macromolecular Research
    • /
    • 제15권1호
    • /
    • pp.22-30
    • /
    • 2007
  • High water vapor permeable coating materials were prepared by blending aqueous poly(vinyl alcohol) (PVA) solution with waterborne polyurethane-urea (WBPU) dispersions synthesized by prepolymer mixing process. Stable WBPU/PVA dispersions were achieved at PVA content below 30 wt%. As the water soluble polymer PVA content increased, the number and density of total micro-pores (tunnel-like/isolated micro-pores) formed after the dissolution of PVA in water increased, and the water vapor permeability of coated Nylon fabric also increased significantly. Using WBPU/water soluble polymer PVA blends as a coating material and then dissolving PVA in water was confirmed to be an effective method to obtain prominent breathable fabrics.

Properties of Waterborne Polyurethane/Nanosilica Composite

  • Kim, Byung-Kyu;Seo, Jang-Won;Jeong, Han-Mo
    • Macromolecular Research
    • /
    • 제11권3호
    • /
    • pp.198-201
    • /
    • 2003
  • Aqueous emulsion of polyurethane (PU) ionomers were reinforced with hydrophobic nanosilica to give composites. The aqueous emulsion was stable and the particle size increased as the content of hydrophobic nanosilica was increased. The reinforcing effect of nanosilica in mechanical properties of these composites were examined by dynamic mechanical and tensile tests, and the Shore A hardness was measured. Enhanced thermal and water resistance and marginal reduction in transparency of these composites were observed compared with pristine polymer. These results were similar with those of our previous studies on waterborne PU/organoclay nanocomposites.

Effect of Polyisocyanate Hardener on Waterborne Polyurethane Adhesive Containing Different Amounts of Ionic Groups

  • Rahman Mohammad Mizanur;Kim Han-Do
    • Macromolecular Research
    • /
    • 제14권6호
    • /
    • pp.634-639
    • /
    • 2006
  • Waterborne polyurethane (WBPU) adhesive with varying amounts of dimethylol propionic acid (DMPA) was synthesized by prepolymer process and blended with polyisocyanate hardener. The mean particle size of the WBPU dispersion decreased with increasing DMPA content. $^1H$ NMR spectroscopy confirmed the formation of allophanate bonds and biuret bonds due to the reaction of hardener NCO with urethane/urea groups. The optimum NCO content with the greatest adhesive strength was dependent on the total content of urethane/urea groups in the WBPU molecules. The optimum NCO content increased with increasing number of urethane groups (DMPA content). The adhesion strength of WBPU adhesives was maximized at a molar ratio of hardener NCO to urethane/urea of about 0.28.

Epoxy를 사용한 수분산 폴리우레탄의 합성 및 물성 (Synthesis and Properties of Waterborne Polyurethane Using Epoxy Group (WPUE))

  • 박지연;정부영;천정미;하창식;천제환
    • 접착 및 계면
    • /
    • 제16권1호
    • /
    • pp.22-28
    • /
    • 2015
  • 본 연구에서는 수분산 폴리우레탄의 내가수분해성 및 접착력을 향상시키기 위하여 polyester polyol, epoxy resin, 4,4-dicyclohexylmethane diisocyanate ($H_{12}MDI$), dimethylol propionic acid (DMPA)를 사용하여 epoxy를 함유한 수분산 폴리우레탄을 합성하였다. 또한 합성된 수분산 폴리우레탄의 물성은 DSC, UTM, adhesion test 등을 통해 평가하였다. 합성된 수분산 폴리우레탄의 Tg는 $-50^{\circ}C$ 부근에서 나타났으며, epoxy resin의 함량이 증가함에 따라 Tg도 상승하는 결과를 나타내었다. Epoxy resin의 함량이 증가함에 따라 인장강도는 증가하였고, 신율은 감소하였다. 또한 접착력 및 내가수분해 접착력은 polyol : epoxy = 99 : 1에서 최고값을 나타내었다.

폴리(테트라메틸렌 글리콜)(PTMG)/폴리카프로락톤)(PCL) 폴리올의 혼합비가 수분산계 폴리우레탄의 물성에 미치는 영향 (Effects of Physical Properties on Waterborne Polyurethane with Poly(tetramethylene glycol) (PTMG) and Polycaprolactone (PCL) Contents)

  • 양윤규;곽노석;황택성
    • 폴리머
    • /
    • 제29권1호
    • /
    • pp.81-86
    • /
    • 2005
  • 본 연구에서는 폴리(테트라메틸렌 글리콜)(PTMG), 폴리카프로락톤(PCL) 및 isophron diisocyanate(IPDI)와 dimethylol propionic acid(DMPA)를 이용하여 물에 분산이 가능한 수분산계 폴리우레탄을 제조하였다. 또한, 사슬연장제의 함량을 변화시키면서 입도분석과 기계적 물성 등을 시험하였다. 유화된 폴리우레탄의 입경은 50~200 nm이었으며, PCL과 사슬연장제의 함량이 많을수록 작아졌으며, $T_g$는 -70~-45 ${\circ}C$ 범위이고 사슬연장제의 함량이 증가함에 따라 $T_g$는 다소 상승하였다. PTMG와 PCL을 혼합하여 합성한 폴리우레탄의 $T_g$는 이들을 각각 사용하여 합성한 $T_g$와 비슷하게 나타났다. 인장강도는 PCL과 사슬연장제의 함량이 증가할수록 높아졌으며 신율은 낮아졌다. 폴리올을 혼합하였을 경우에는 단독으로 합성한 것보다 전반적으로 기계적 물성이 저하되는 것을 확인하였다.

Effect of NCO/OH Ratio and Chain Extender Content on Properties of Polycarbonate Diol-based Waterborne Polyurethane

  • Kim, Eun-jin;Kwon, Yong Rok;Chang, Young-Wook;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • 제57권1호
    • /
    • pp.13-19
    • /
    • 2022
  • Polycarbonate diol-based waterborne polyurethane (WPU) was prepared by prepolymer mixing process. The prepolymer mixture contained the polycarbonate diol, isophorone diisocyanate (IPDI), dimethylol propionic acid, triethylamine, and ethylenediamine (EDA). The NCO/OH ratio in the prepolymer was adjusted by controlling the molar ratio of IPDI, and its effects on the properties of WPU were studied. The structure of WPU was characterized by fourier transform infrared spectroscopy. The average particle size increased and viscosity decreased with increasing NCO/OH ratio and EDA content in WPU. The reduced phase separation between soft and hard segments increased glass transition temperature. The reduction in the thermal decomposition temperature could be attributed to the low bond energy of urethane and urea groups, which constituted the hard segment. Additionally, the polyurethane chain mobility was restricted, elongation decreased, and tensile strength increased. The hydrogen bond between the hard segments formed a dense structure that hindered water absorption.

Effect of Multi-functional Group of Acrylate Crosslinker on Properties of Waterborne Polyurethane-acrylate

  • Moon, Seok Kyu;Kim, Eun-jin;Kwon, Yong Rok;Kim, Jung Soo;Kim, Hae Chan;Park, Han Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • 제57권3호
    • /
    • pp.100-106
    • /
    • 2022
  • Waterborne polyurethane-acrylate(WPUA) dispersions were prepared by surfactant-free emulsion polymerization in a two-step process. In the first step, polytetrahydrofuran, isophorone diisocyanate, dimethylol proponic acid, and 2-hydroxyethyl methacrylate were used to synthesize a vinyl-terminated polyurethane prepolymer. In the second step, styrene, methyl methacrylate, butyl acrylate, and different multi-functional crosslinkers were copolymerized. 1,6-hexanediol diacrylate, trimethylolpropane triacrylate, and pentaerythritol tetraacrylate were used as the crosslinkers, and their effect on the mechanical and thermal properties of WPUA was investigated. Overall, as the number of functional groups of the cross-linker increased, the gel fraction improved to 79.26%, the particle size increased from 75.9 nm to 148.7 nm, and the tensile strength was improved from 5.86 MPa to 12.40 MPa. In thermal properties, the glass transition temperature and decomposition temperature increased by 9.9℃ and 18℃, respectively. The chemical structures of the WPUA dispersions were characterized by Fourier-transform infrared spectroscopy. The synthesized WPUA has high potential for applications such as coatings, leather coatings, adhesives, and wood finishing.

아크릴 단량체 종류 변화가 수분산 Polyurethane Dispersion의 물성에 미치는 영향 (Effect of Types of Acrylate Monomers on the Properties of Waterborne Polyurethane Dispersion)

  • 신용탁;홍민기;김병석;이원기;유병원;이명구;송기창
    • Korean Chemical Engineering Research
    • /
    • 제49권5호
    • /
    • pp.548-553
    • /
    • 2011
  • Isophorone diisocyanate(IPDI), polycarbonate diol(PCD), dimethylol propionic acid(DMPA)를 출발물질로 하여 NCO terminated prepolymer가 합성되었다. 이 prepolymer의 NCO기를 아크릴 단량체로 capping하기 위해 다양한 아크릴 단량체인 2-hydroxyethyl methacrylate(HEMA), 2-hydroxyethyl acrylate(HEA), pentaerythritol triacrylate(PETA)가 첨가되었다. 제조된 용액의 평균 입경은 아크릴 단량체가 첨가되면서 증가하였다. 또한 제조된 코팅 막의 연필경도 및 내마모성은 순수한 수분산 폴리우레탄보다 우수하였으며, 아크릴 단량체 중에서 PETA가 가장 우수한 물성을 보였다.