Browse > Article
http://dx.doi.org/10.7473/EC.2022.57.1.13

Effect of NCO/OH Ratio and Chain Extender Content on Properties of Polycarbonate Diol-based Waterborne Polyurethane  

Kim, Eun-jin (Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH))
Kwon, Yong Rok (Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH))
Chang, Young-Wook (Department of Material Chemical Engineering, Hanyang University)
Kim, Dong Hyun (Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH))
Publication Information
Elastomers and Composites / v.57, no.1, 2022 , pp. 13-19 More about this Journal
Abstract
Polycarbonate diol-based waterborne polyurethane (WPU) was prepared by prepolymer mixing process. The prepolymer mixture contained the polycarbonate diol, isophorone diisocyanate (IPDI), dimethylol propionic acid, triethylamine, and ethylenediamine (EDA). The NCO/OH ratio in the prepolymer was adjusted by controlling the molar ratio of IPDI, and its effects on the properties of WPU were studied. The structure of WPU was characterized by fourier transform infrared spectroscopy. The average particle size increased and viscosity decreased with increasing NCO/OH ratio and EDA content in WPU. The reduced phase separation between soft and hard segments increased glass transition temperature. The reduction in the thermal decomposition temperature could be attributed to the low bond energy of urethane and urea groups, which constituted the hard segment. Additionally, the polyurethane chain mobility was restricted, elongation decreased, and tensile strength increased. The hydrogen bond between the hard segments formed a dense structure that hindered water absorption.
Keywords
waterborne polyurethane; NCO/OH ratio; polycarbonate diol; chain extender; ethylenediamine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. K. Mishra, S. Bose, T. Kuila, N. H. Kim, and J. H. Lee, "Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells", Prog. Polym. Sci., 37, 842 (2012).   DOI
2 D. W. Kang and Y. N. Yin, "Preparation and Properties of Polyorganosiloxane Modified Polyurethane Dispersion", Appl. Chem. Eng., 21, 46 (2010).
3 G. Lligadas, J. C. Ronda, M. Galia, and V. Cadiz, "Poly(ether urethane) Networks from Renewable Resources as Candidate Biomaterials: Synthesis and Characterization", Biomacromolecules, 8, 686 (2007).   DOI
4 F. Xie, Ti. Zhang, P. Bryant, V. Kurusingal, J. M. Colwell, and B. Laycock, "Degradation and stabilization of polyurethane elastomers", Prog. Polym. Sci., 90, 211 (2019).   DOI
5 M. M. Rahman and H. D. Kim, "Synthesis and characterization of waterborne polyurethane adhesives containing different amount of ionic groups (I)", J. Appl. Polym. Sci., 102, 5684 (2006).   DOI
6 A. Asif and W. Shi, "UV curable waterborne polyurethane acrylate dispersions based on hyperbranched aliphatic polyester: effect of molecular structure on physical and thermal properties", Polym. Adv. Technol., 15, 669 (2004).   DOI
7 U. Khan, P. May, A. O'Neill, and J. N. Coleman, "Development of stiff, strong, yet tough composites by the addition of solvent exfoliated graphene to polyurethane", Carbon, 48, 40351 (2010).
8 H. Liang, L. Liu, J. Lu, M. Chen, and C. Zhang, "Castor oilbased cationic waterborne polyurethane dispersions: Storage stability, thermo-physical properties and antibacterial properties", Ind. Crops. Prod., 117, 169 (2018).   DOI
9 K. L. Noble, "Waterborne polyurethanes", Prog. Org. Coat., 32, 131 (1997).   DOI
10 H. C. Kuan, C. C. M. Ma, W. P. Chang, S. M. Yuen, H. H. Wu, and T. M. Lee, "Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite", Compos. Sci. Technol., 65, 1703 (2005).   DOI
11 B. K. Kim, "Aqueous polyurethane dispersions", Colloid. Polym. Sci., 274, 599 (1996).   DOI
12 A. Eceiza, M. D. Martin, K. De La Caba, G. Kortaberria, N. Gabilondo, M. A. Corcuera, and I. Mondragon, "Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: Mechanical and thermal properties", Polym. Eng. Sci., 48, 297 (2008).   DOI
13 S. Subramani, J. M. Lee, I. W. Cheong, and J. H. Kim, "Synthesis and characterization of water-borne crosslinked silylated polyurethane dispersions", J. Appl. Polym. Sci., 98, 620 (2005).   DOI
14 L. H. Bao, Y. J. Lan, and S. F. Zhang, "Synthesis and Properties of Waterborne Polyurethane Dispersions with Ions in the Soft Segments", J. Polym. Res., 13, 507 (2006).   DOI
15 V. Garcia-Pacios, V. Costa, M. Colera, and J. M. Martin-Martinez, "Affect of polydispersity on the properties of waterborne polyurethane dispersions based on polycarbonate polyol", Int. J. Adhes. Adhes., 30, 456 (2010).   DOI
16 C. Y. Bai, X. Y. Zhang, J. B. Dai, and C.Y. Zhang, "Water resistance of the membranes for UV curable waterborne polyurethane dispersions", Prog. Org. Coat., 59, 331 (2007).   DOI
17 O. Jaudouin, J. J. Robin, J. M. Lopez-Cuesta, D. Perrin, and C. Imbert, "Ionomer-based polyurethanes: a comparative study of properties and applications", Polym. Int., 61, 495 (2012).   DOI
18 S. M. Cakic, M. Spirkova, I. S. Ristic, J. K. B-Simendic, M. M-Cincovic, and R. Poreba, "The waterborne polyurethane dispersions based on polycarbonate diol: effect of ionic content", Mater. Chem. Phys., 138, 277 (2013).   DOI
19 M. Melchiors, M. Sonntag, C. Kobusch, and E, Jurgens, "Recent developments in aqueous two-component polyurethane (2K-PUR) coatings", Prog. Org. Coat., 40, 99 (2000).   DOI
20 K. W. Cheng and S. H. Hsu, "A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles", Int. J. Nanomedicine., 12, 1775 (2017).   DOI
21 C. H. Yang, H. J. Yang, T. C. Wen, M. S. Wu, and J. S. Chang, "Mixture design approaches to IPDI-H6XDI-XDI ternary diisocyanate-based waterborne polyurethanes", Polymer, 40, 871 (1999).   DOI
22 N. Kebir, I. Campistron, A. Laguerre, J. F. Pilard, C. Bunel, J. P. Couvercelle, and C. Gondard, "Use of hydroxytelechelic cis-1,4-polyisoprene (HTPI) in the synthesis of polyurethanes (PUs). Part 1. Influence of molecular weight and chemical modification of HTPI on the mechanical and thermal properties of PUs", Polymer, 46, 6869 (2005).   DOI
23 Y. H. Guo, J. J. Guo, H. Miao, L. J. Teng, and Z. Huang, "Properties and paper sizing application of waterborne polyurethane emulsions synthesized with isophorone diisocyanate", Prog. Org. Coat., 77, 988 (2014).   DOI
24 M. M. Rahman and H. D. Kim, "Characterization of waterborne polyurethane adhesives containing different soft segments", J. Adhes. Sci. Technol., 21, 81 (2007).   DOI
25 T. Artham and M. Doble, "Fouling and Degradation of Polycarbonate in Seawater: Field and Lab Studies", J. Polym. Environ., 17, 170 (2009).   DOI
26 E. Y. Shin and H.J. Kim, "Effects of Neutralizers and Chain Extenders on the Properties of Cationic Polyurethane Water Dispersions", Polymer(Korea), 35, 171 (2011).
27 ASTM Standard D412, "Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension", Annual book of ASTM standard, 9, (1990).
28 S. M. Cakic, M. Spirkova, I. S. Ristic, J. K. B-Simendic, M. M-Cincovic, and R. Poreba, "The waterborne polyurethane dispersions based on polycarbonate diol: Effect of ionic content", Mater. Chem. Phys., 138, 277 (2013).   DOI
29 V. Garcia-Pacios, V. Costa, M. Colera, and J. M. Martin-Martinez, "Waterborne polyurethane dispersions obtained with polycarbonate of hexanediol intended for use as coatings", Prog. Org. Coat., 71, 136 (2011).   DOI
30 Y. K. Jhon, I. W. Cheong, and J. H. Kim, "Chain extension study of aqueous polyurethane dispersions", Colloids. Surf. A. Physicochem. Eng. Asp., 179, 71 (2001).   DOI