• Title/Summary/Keyword: water-treatment

Search Result 12,111, Processing Time 0.043 seconds

The Study on Development of Porous Media for Water Treatment (수처리용 다공성여재의 개발에 관한 연구)

  • 이영신;정상철;홍성철
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.4
    • /
    • pp.16-20
    • /
    • 1997
  • The purpose of this study is to develop of porous media for water treatment. It was made of porous media which was sinteringed on a comparative low temperature 600$\circ$C, was annexed slag (media-s) and humus soil (media-h) with material, only material kaolinite(media-k). In order to examine the characteristics of physical-chemical were used to sem, x-ray. The results of study are given porous size on media-h which was able to water treatment.

  • PDF

Application of the Proper Air Supply Amount Based on the Influent Water Quality for the Development of Efficient Blower Control Logic in Sewage Treatment Plants (하수처리장의 효율적인 Blower Control Logic 개발을 위한 유입수질 기반 공기공급량 적용 연구)

  • Yeo, Wooseok;Kim, Jong Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.493-499
    • /
    • 2022
  • The standards pertaining to the quality of discharged water in sewage treatment plants are strengthening, and accordingly, facilities in sewage treatment plants are being upgraded. In addition, the discharge water quality of sewage treatment plants must be maintained at a high level, and efficient sewage treatment plant operations have thus emerged as a very important issue. For the efficient operation of sewage treatment plants, this study applied a basic blowing amount calculation method based on sewage facilities to evaluate the required oxygen amount and blowing amount according to inflow water quality by logicizing various influencing factors. As a result of calculating the amount of air blown by applying actual April water quality data from sewage treatment plant A to the blower demand calculation developed through this study, it was found that the average amount of air blown was reduced by about 12%. When the blower demand calculation developed here is applied to an actual sewage treatment plant, the amount of air blown can be controlled based on the inflow water quality. This can facilitate the realization of an autonomous control of sewage treatment plants, in contrast to the existing sewage treatment operation method that relies on operational experience of operator. In addition, it is expected that efficient sewage treatment plants can be operated by reducing blowing amounts and power costs, which will contribute to both energy and carbon savings.

The Removal of Dioxins and the Formation of 2, 3, 7, 8-TeCDF in Drinking Water Treatment in Japan (정수처리에서의 다이옥신 제거 및 2, 3, 7, 8-TeCDF 생성)

  • Kim, Hyun-koo
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.758-766
    • /
    • 2008
  • To evaluate homologue patterns and removal efficiency before and after water treatment, the concentrations of dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and coplanar polychlorinated biphenyls (Co-PCBs) were determined in 122 samples from 42 drinking water treatment plants throughout Japan over a two year period. The mean concentrations and toxic equivalent (TEQ) values of dioxins in raw and treated waters were 60.24 pg/L (0.14 pg-WHO-TEQ/L) and 4.15 pg/L (0.016 pg-WHO-TEQ/L), respectively. The dioxins contribution ratio of drinking water in relation to dioxins tolerable daily intake (TDI, 4 pg-TEQ/kg/day) was 0.016%. The mean TEQ removal rate of dioxins by drinking water treatment was over 88%. However, the mean removal rate of 2, 3, 7, 8-TeCDF (tetrachlorodibenzofuran) by water treatment in the 122 samples was minus 17%. Therefore, to identify which process affected the level of 2, 3, 7, 8-TeCDF, the removal efficiencies at both the advanced and conventional water treatment plants were investigated. For the TEQ removal rate across the processes, the dioxin congeners, TeCDF and non-ortho-PCBs remarkably indicated minus values after chlorination in both the advanced and conventional water treatments plant. From this study, the level of 2, 3, 7, 8-TeCDF was found to be increased as a result of chlorination.

Biological Activated Carbon (BAC) Process in Water Treatment (정수처리에서의 생물활성탄 공정)

  • Son, Hee-Jong;Yoo, Soo-Jeon;Roh, Jae-Soon;Yoo, Pyong-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.308-323
    • /
    • 2009
  • This review paper serves to describe the composition and activity of biological activated carbon (BAC) biofilm which is considered as a progressive process for water treatment. As well as several physical-chemical, biochemical and microbiological analysis methods for characterizing the composition and activity of BAC biofilm, the ability of the biofilm to remove and biodegrade organic matters and pollutants related to other water treatment processes such as pre-ozonation will be reviewed. In this paper, conversion of GAC into BAC, removal mechanism of pollutants, characteristics and affecting factors of BAC biofilm, and modeling of BAC are described in detail. In addition, strategies to control the growth of the BAC biofilm, such as varying the nutrient loading rate, altering the frequency of BAC filter backwashing and applying oxidative disinfection, will be dwelled on related to their respective process control challenges.

Evaluation of Applicability and Economical Efficiency of Peroxone Process for Removal of Micropollutants in Drinking Water Treatment (정수처리에서 미량유해물질 제거를 위한 Peroxone 공정의 적용성 및 경제성 평가)

  • Son, Hee-Jong;Kim, Sang-Goo;Yeom, Hoon-Sik;Choi, Jin-Taek
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.905-913
    • /
    • 2013
  • We compared the applicability and economical efficiency of peroxone process with those of ozone process in the existing water treatment plant on downstream of Nakdong River. After comparing the peroxone process for removing geosmin with the ozone process in lab scale test, peroxone process showed much higher removal efficiency than the ozone process at the same ozone dosage. Proper range of $H_2O_2/O_3$ ratio were 0.5~1.0 and the half-life of geosmin was about 5.5~6.8 min when the $H_2O_2/O_3$ ratio was set to 0.5 during 1~2 mg/L of ozone dosage. Peroxone process could reduce the ozone dosage about 50 to maximum 30% for the same geosmin removal efficiency compared to the ozone process in the pilot scale test. In case of 1,4-dioxane treatment, peroxone process could have 3~4 times higher efficiency than ozone process at the same ozone dosage. The results of estimating the economical efficiency of ozone and peroxone process for treating geosmin and 1,4-dioxane by using pilot scale test, in case of the removal target was set to 85% for these two materials, the cost of peroxane process could be reduced about 1.5 times compared to ozone process, and in the same production cost peroxone process could have 2~3 times higher removal efficiency than ozone process. The removal efficiency by peroxone process showed a large difference depending on the physicochemical characteristics of target materials and raw water, therefore detailed examination should be carried out before appling peroxone process.

Emergy Cost-Benefit Evaluation of the Down Stream of Nakdong River Using Environmental-Ecological Concept (환경 생태학적 개념을 이용한 낙동강 하류의 에머지 비용-편익 평가)

  • Jung, Hwa-Sook;Lee, Seog-Mo;Son, Hyeng-Sik;Son, Hee-Jong
    • Journal of Environmental Science International
    • /
    • v.22 no.4
    • /
    • pp.507-514
    • /
    • 2013
  • The Nakdong River being used as drinking water sources for the Busan metropolitan city has the vulnerability of water management due to the fact that industrial areas are located in the upper Nakdong River. This study used emergy analysis method to evaluate ecological-economics of water treatment systems of D water treatment plant (WTP) where located in the downstream of the Nakdong River. The emergy methodology is a system evaluation tool that uses energy as the common currency to compare different resources on a common basis. Emergy yield ratio (EYR) and emergy sustainability index (EmSI) of D WTP were 1.16 and 0.18, respectively. It means not resources and sustainable system but consumer goods and not sustainable system. Ratio of emergy benefit to the purchaser (EBP) shows 2.7 times higher than economic costs. To change the weak water source and situations we need to diversity water intake.

A study on the treatment of water discharge from the water treatment plant using end-free submerged membrane - Causes and solution of membrane fouling - (자유 말단형 침지식 분리막을 이용한 정수장 배출수 처리 연구 - 막오염 발생 원인과 해결 방안 -)

  • Kim, Jun-Hyun;Jang, Jung-Woo;Kim, Jin-Ho;Park, Kwang-Duck
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.2
    • /
    • pp.93-104
    • /
    • 2020
  • As water resources are limited and legal regulations are strengthened, there is a growing need to reuse residuals in WTP(Water Treatment Plant). In this study, membrane filtration system was constructed and its operation method was studied for water quality stabilization and reuse of WTP residuals. The operation parameters were stable for 1 year and 6 months. Membrane fouling was identified as particulate pollution (activated carbon) and inorganic pollution (manganese). The membrane system was operated steadily with raw water of high concentration SS(Suspended solid) containing activated carbon because membrane fouling was reduced by the effect of End-Free type. In the case of inorganic contamination, dissolved manganese eluted by chemicals and acted as a membrane fouling source, and the operating conditions for minimizing membrane fouling. were confirmed by newly developing application methods and types of cleaning chemicals. Based on the results, design parameters for reducing manganese membrane fouling were derived.